SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

THE NONEXISTENCE OF COMPLEX HAAR SYSTEMS ON NONPLANAR LOCALLY CONNECTED SPACES

GEORGE W. HENDERSON AND BRIAN R. UMMEL

Let \(X \) be a compact Hausdorff space and \(C(X) \) be the complex linear space of complex valued continuous functions defined on \(X \). An \(n \)-dimensional subspace \(L \) of \(C(X) \), \(n \geq 2 \), is called a complex Haar system on \(X \) if every nonzero member of \(L \) has at most \(n - 1 \) zeros. The purpose of this note is to prove

Theorem 1. If \(X \) is locally connected, then a necessary and sufficient condition for the existence of a complex Haar system of \(X \) is that \(X \) be imbeddable in the plane.

This affirms a conjecture of J. Overdeck and generalizes the theorem of Schoenberg and Yang [3] in which \(X \) was assumed to be finite polyhedral. To see how their proof extends to the locally connected case, let \(S^2 \) be the 2-sphere, \(K_5 \) and \(K_{3,3} \) be the primitive skew curves (i.e. the complete graph on 5 vertices and the houses and wells configuration), and \(C_1 \) and \(C_2 \) be the Claytor curves as described on the first page of [1].

Theorem 2 (Claytor [1]). If \(X \) is a nonplanar Peano continuum, then \(X \) contains a subspace homeomorphic to one of \(S^2 \), \(K_5 \), \(K_{3,3} \), \(C_1 \), or \(C_2 \).

Since a complex Haar system on \(X \) induces one on each of its subspaces, it suffices to show that none of these five spaces admits a complex Haar system. This was done in [3] for \(S^2 \), \(K_5 \), and \(K_{3,3} \). Now observe that \(C_j \) contains a nonempty open set \(U_j \) such that \(C_j - U_j \) is homeomorphic to \(C_j \), \(j = 1 \) or \(2 \). If there were a complex Haar system on \(C_j \), then \(C_j - U_j \) would be imbeddable in the plane by Lemma 1 of [2]; but this is impossible since \(C_j - U_j \) is homeomorphic to \(C_j \). This proves necessity, and the sufficiency is obvious.

Received by the editors May 12, 1971.

© American Mathematical Society 1973

640
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MILWAUKEE, MILWAUKEE, WISCONSIN 53201