An isolated bounded point derivation
HTML articles powered by AMS MathViewer
- by Anthony G. O’Farrell PDF
- Proc. Amer. Math. Soc. 39 (1973), 559-562 Request permission
Abstract:
For a compact subset $X$ of the plane, $R(X)$ denotes the class of uniform limits on $X$ of rational functions with poles off $X$. $R(X)$ is a function algebra on $X$. An example $X$ is constructed such that $R(X)$ admits a bounded point derivation at exactly one point of $X$.References
- Andrew Browder, Introduction to function algebras, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0246125
- Andrew Browder, Point derivations and analytic structure in the spectrum of a Banach algebra, J. Functional Analysis 7 (1971), 156–164. MR 0273407, DOI 10.1016/0022-1236(71)90051-6
- Alfred P. Hallstrom, On bounded point derivations and analytic capacity, J. Functional Analysis 4 (1969), 153–165. MR 0243358, DOI 10.1016/0022-1236(69)90028-7
- Robert McKissick, A nontrivial normal sup norm algebra, Bull. Amer. Math. Soc. 69 (1963), 391–395. MR 146646, DOI 10.1090/S0002-9904-1963-10940-4
- John Wermer, Bounded point derivations on certain Banach algebras, J. Functional Analysis 1 (1967), 28–36. MR 0215105, DOI 10.1016/0022-1236(67)90025-0
- Lawrence Zalcmann, Analytic capacity and rational approximation, Lecture Notes in Mathematics, No. 50, Springer-Verlag, Berlin-New York, 1968. MR 0227434, DOI 10.1007/BFb0070657
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 559-562
- MSC: Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9939-1973-0315452-9
- MathSciNet review: 0315452