Conditions for $\textrm {Ker}(R[X]\rightarrow R[c/b])$ to have a linear base
HTML articles powered by AMS MathViewer
- by L. J. Ratliff
- Proc. Amer. Math. Soc. 39 (1973), 509-514
- DOI: https://doi.org/10.1090/S0002-9939-1973-0316442-2
- PDF | Request permission
Abstract:
A number of necessary and/or sufficient conditions are given for the kernel of the homomorphism in the title to be generated by linear polynomials. Two applications are given.References
- E. Graham Evans Jr., A generalization of Zariski’s main theorem, Proc. Amer. Math. Soc. 26 (1970), 45–48. MR 260716, DOI 10.1090/S0002-9939-1970-0260716-8
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Christian Peskine, Une généralisation du “main theorem” de Zariski, Bull. Sci. Math. (2) 90 (1966), 119–127 (French). MR 206037
- Louis J. Ratliff Jr., Note on analytically unramified semi-local rings, Proc. Amer. Math. Soc. 17 (1966), 274–279. MR 186691, DOI 10.1090/S0002-9939-1966-0186691-1
- L. J. Ratliff Jr., Characterizations of catenary rings, Amer. J. Math. 93 (1971), 1070–1108. MR 297752, DOI 10.2307/2373746
- L. J. Ratliff Jr., On prime divisors of the integral closure of a principal ideal, J. Reine Angew. Math. 255 (1972), 210–220. MR 311638, DOI 10.1515/crll.1972.255.210
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 509-514
- MSC: Primary 13B25; Secondary 13A15
- DOI: https://doi.org/10.1090/S0002-9939-1973-0316442-2
- MathSciNet review: 0316442