A combinatorial analog of Lyapunov’s theorem for infinitesimally generated atomic vector measures
HTML articles powered by AMS MathViewer
- by Peter A. Loeb
- Proc. Amer. Math. Soc. 39 (1973), 585-586
- DOI: https://doi.org/10.1090/S0002-9939-1973-0316674-3
- PDF | Request permission
Abstract:
It is shown that the range of a measure obtained by the addition of infinitesimal vectors is convex up to infinitesimal errors.References
- V. Bergström, Ein neuer Beweis eines Satzes von E. Steinitz, Abh. Math. Sem. Univ. Hamburg. 8 (1931), 148-154.
—, Zwei Sätze über ebene Vectorpolygone, Abh. Math. Sem. Univ. Hamburg. 8 (1931), 206-214.
D. J. Brown, Existence of a competitive equilibrium in a nonstandard exchange economy, Cowles Foundation Discussion Paper No. 342, Cowles Foundation for Research in Economics, Yale University, New Haven, Conn.
- Ira Damsteeg and Israel Halperin, The Steinitz-Gross theorem on sums of vectors, Trans. Roy. Soc. Canada Sect. III 44 (1950), 31–35. MR 38559
- J. F. C. Kingman and A. P. Robertson, On a theorem of Lyapunov, J. London Math. Soc. 43 (1968), 347–351. MR 224768, DOI 10.1112/jlms/s1-43.1.347
- Abraham Robinson, Non-standard analysis, North-Holland Publishing Co., Amsterdam, 1966. MR 0205854 E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme, J. Reine Angew. Math. 143 (1913), 128-175.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 585-586
- MSC: Primary 28A45; Secondary 26A98
- DOI: https://doi.org/10.1090/S0002-9939-1973-0316674-3
- MathSciNet review: 0316674