PROJECTIVE COMPACT DISTRIBUTIVE TOPOLOGICAL LATTICES

TAE HO CHOE

Abstract. In the category of all compact distributive topological lattices and their continuous lattice-homomorphisms, it is shown that every projective object is either zero-dimensional or not I-compact.

By a topological lattice we mean a lattice together with a Hausdorff topology under which the two lattice operations are continuous. All terminologies and notation of lattices and category theory used in this paper are the same as in [2] and in [6], respectively.

Let \(\mathcal{L} \) be a category of topological lattices and their continuous lattice-homomorphisms. By a projective object \(P \) in \(\mathcal{L} \), we mean that, for an onto morphism \(f: A \to B \) and a morphism \(g: P \to B \) in \(\mathcal{L} \), there exists a morphism \(h: P \to A \) in \(\mathcal{L} \) such that \(fh = g \).

Let \(I \) be the unit interval \([0, 1]\) of reals with the usual topology and the usual order structure. For a topological lattice \(L \), if \(L \) is topologically and algebraically isomorphic with a (closed) sublattice of a product of unit intervals, then we say that \(L \) is (I-compact, respectively) I-regular.

Lemma. Let \(\mathcal{L} \) be a category of topological lattices which is closed hereditary and finitely productive. If \(P \) is a connected projective object in \(\mathcal{L} \) then, for every prime ideal \(A \) of \(P \), either \(A \) or \(P \setminus A \) is dense in \(P \).

Proof. We may assume that \(\mathcal{L} \) is nontrivial i.e., \(\mathcal{L} \) has at least one nondegenerate object. Then the two element chain lattice \(2 = \{0, 1\} \) with the discrete topology is always in \(\mathcal{L} \). Clearly, the closures \(A^- \) and \((P \setminus A)^- \) are both closed sublattices of \(P \). Let \(Q = (A^- \times \{0\}) \cup ((P \setminus A)^- \times \{1\}) \). Then \(Q \) is a closed sublattice of \(P \times 2 \).

Now let \(j \) be the inclusion of \(Q \) into \(P \times 2 \), and let \(p \) be the projection of \(P \times 2 \) onto \(P \). Then \(pj: Q \to P \) is onto. Since \(P \) is projective, for \(pj \) and the identity \(i \) of \(P \), there exists a morphism \(f: P \to Q \) in \(\mathcal{L} \) such that \(pjf = i \).

Since \(P \) is connected, either \(f(P) \subseteq A^- \times \{0\} \) or \(f(P) \subseteq (P \setminus A)^- \times \{1\} \). If

Received by the editors September 25, 1972.

AMS (MOS) subject classifications (1970). Primary 54F05; Secondary 18D35.

Key words and phrases. Topological lattice, category and projectivity.

1 This research was supported by an NRC Grant, Canada.
let \(f(P) \subseteq A^- \times \{0\} \), then \(P = f^{-1}(A^- \times \{0\}) \). On the other hand, we can show that \(f^{-1}(A^- \times \{0\}) = A^- \). It suffices to show that \(f^{-1}(A^- \times \{0\}) \subseteq A^- \). Let \(x \in f^{-1}(A^- \times \{0\}) \). Suppose that \(f(x) = (y, 0) \in A^- \times \{0\} \). Since \(pyf = i \), we have \(x = y \). Thus \(x \in A^- \). Hence \(A \) is dense in \(P \). Similarly, for the case that \(f(P) \subseteq (P \setminus A) \times \{1\} \), \(P \setminus A \) is dense in \(P \).

Remark. With a few additional conditions to those of the above lemma, it can be generalized to some other Hausdorff topological algebras of finite type as follows:

Let \(\mathcal{A} \) be a category of Hausdorff topological algebras of the same finite type which is closed hereditary and finitely productive, and let \(P \) be connected projective in \(\mathcal{A} \). If

(i) the two point algebra \(2 \) with the discrete topology is in \(\mathcal{A} \),

(ii) \(A \) and \(P \setminus A \) are both subalgebras of \(P \) and \(Q = (A^- \times \{0\}) \cup ((P \setminus A)^- \times \{1\}) \) is a closed subalgebra of \(P \times 2 \) then either \(A \) or \(P \setminus A \) is dense in \(P \).

For example, in the case of Hausdorff topological spaces (as trivial algebras) (i) and (ii) are always true and, in the case of topological semigroups, if \(A \) is a prime ideal of \(P \) and the two point meet semilattice with discrete topology is in \(\mathcal{A} \), then (i) and (ii) are always true.

Theorem. Let \(\mathcal{L} \) be a category of topological distributive lattices which is closed hereditary and finitely productive. Then every projective object in \(\mathcal{L} \) is either totally disconnected or not \(I \)-regular.

Proof. Let \(P \) be projective in \(\mathcal{L} \). Suppose that \(P \) is not totally disconnected. Then we have a connected component \(C \) of \(P \) with more than two points, and it is a closed convex sublattice of \(P \) [4]. Let \(J = [\alpha, \beta] \) be a nondegenerate closed interval of \(C \). Then \(J \) is also a closed interval in \(P \), which is connected since \(C \) is. Further, it is easy to see that the map \(f : P \to J = [\alpha, \beta] \) defined by \(f(x) = \alpha \lor (x \land \beta) \) is a retraction. Hence \(J \) is also projective in \(\mathcal{L} \). Now we show that \(J \) does not have a nonconstant continuous lattice-homomorphism from \(J \) into \(I \). Indeed, if \(g : J \to I \) is a nonconstant continuous lattice-homomorphism, then \(g(J) = [r, s] \subseteq I \) with \(r < s \). It is easy to see that \(f^{-1}([r, t]) \) \((r < t < s)\) is a closed prime ideal of \(J \), and it is neither dense in \(J \) nor is its complement dense in \(J \). This is a contradiction of the lemma.

Corollary 1. Let \(\mathcal{D} \) be the category of all compact distributive lattices. Then every projective lattice in \(\mathcal{D} \) is either zero-dimensional or not \(I \)-compact.

It is known [7] that if \(L \) is a compact distributive lattice then \(L \) is \(I \)-compact iff \(L \) is completely distributive. Hence by the theorem every projective lattice in the category of all compact completely distributive lattices and their continuous lattice-homomorphisms is zero-dimensional.
It is shown [3] that, in the category of all zero-dimensional compact
distributive lattices, \(P \) is projective iff \(P \) is a retract of the residually finite
completion of a free distributive lattice.

Hence we have the following:

Corollary 2. Let \(\mathcal{CD} \) be the category of all compact completely
distributive lattices. Then every projective lattice in \(\mathcal{CD} \) is a retract of the
residually finite completion of a free distributive lattice.

Remark. It is known [5] that there actually exists a compact distribu-
tive lattice which is not \(I \)-compact. However, the author does not know
whether a projective one which is not \(I \)-compact exists in \(\mathcal{D} \). If such a
projective \(P \) exists in \(\mathcal{D} \), then \(P \) must have the following properties
(i)-(iii):

(i) \(P \) has a nondegenerate connected retract which has no nonconstant
continuos lattice-homomorphism into \(I \).

(ii) \(P/\rho \), where \(x \rho y \) iff \(x \) and \(y \) belong to the same connected component
of \(P \), is projective in \(\mathcal{D} \).

(iii) If \(P \) is connected then, for any upper (or lower) bound \(x \) of a non-
empty open subset of \(P \), \(x \vee P \) (or \(x \wedge P \) respectively) has void interior.

References

 algebras*, (submitted).
 81–85. MR 43 #8055.
 230. MR 37 #3532.

DEPARTMENT OF MATHEMATICS, McMaster University, Hamilton, Ontario,
Canada