Spheres which are loop spaces $\textrm {mod}$ $p$
HTML articles powered by AMS MathViewer
- by Clarence Wilkerson
- Proc. Amer. Math. Soc. 39 (1973), 616-618
- DOI: https://doi.org/10.1090/S0002-9939-1973-0317319-9
- PDF | Request permission
Abstract:
If $S_{(p)}^{2n - 1}$ has a loop space structure, than $n|p - 1$.References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20β104. MR 141119, DOI 10.2307/1970147
- J. F. Adams, The sphere, considered as an $H$-space $\textrm {mod}\,p$, Quart. J. Math. Oxford Ser. (2) 12 (1961), 52β60. MR 123323, DOI 10.1093/qmath/12.1.52 M. F. Atiyah, $K$-theory, Lecture notes edited by D. W. Anderson, Harvard University, Cambridge, Mass., 1964.
- M. F. Atiyah, Power operations in $K$-theory, Quart. J. Math. Oxford Ser. (2) 17 (1966), 165β193. MR 202130, DOI 10.1093/qmath/17.1.165
- Roy R. Douglas and FranΓ§ois Sigrist, Homotopy-associative $H$-spaces which are sphere bundles over spheres, Comment. Math. Helv. 44 (1969), 308β309. MR 248821, DOI 10.1007/BF02564530
- J. R. Hubbuck, On homotopy commutative $H$-spaces, Topology 8 (1969), 119β126. MR 238316, DOI 10.1016/0040-9383(69)90004-4
- J. R. Hubbuck, Generalized cohomology operations and $H$-spaces of low rank, Trans. Amer. Math. Soc. 141 (1969), 335β360. MR 248809, DOI 10.1090/S0002-9947-1969-0248809-9
- Arunas Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 978β981. MR 132543, DOI 10.1073/pnas.46.7.978
- N. E. Steenrod, The cohomology algebra of a space, Enseign. Math. (2) 7 (1961), 153β178 (1962). MR 160208
- Dennis Sullivan, Geometric topology. Part I, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR 0494074 C. Wilkerson, $K$-theory techniques in $\bmod p$ loop spaces, Math. Z. (to appear).
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 616-618
- MSC: Primary 55D35
- DOI: https://doi.org/10.1090/S0002-9939-1973-0317319-9
- MathSciNet review: 0317319