Random walks on compact semigroups
HTML articles powered by AMS MathViewer
- by A. Mukherjea, T. C. Sun and N. A. Tserpes
- Proc. Amer. Math. Soc. 39 (1973), 599-605
- DOI: https://doi.org/10.1090/S0002-9939-1973-0317420-X
- PDF | Request permission
Abstract:
Let $\beta$ be a regular Borel probability measure with support $F$ on a compact semigroup $S$. Let ${X_1},{X_2}, \cdots$ be a sequence of independent random variables on some probability space $(\Omega ,\Sigma ,P)$ with values in $S$, having identical distribution $P({X_n} \in B) = \beta (B)$. The random walk ${Z_n} = {X_1}{X_2} \cdots {X_n}$ is studied in this paper. Let $D$ be the closed semigroup generated by $F$. An element $x$ in $D$ is called recurrent iff ${P_x}({Z_n} \in {N_x}i.o.) = 1$ for every open set ${N_x}$ containing $x$. This paper characterizes the recurrence of an element $x$ in terms of divergence of the series $\sum \nolimits _{n = 1}^\infty {{\beta ^n}} ({N_x})$ for every open set ${N_x}$ containing $x$. It also shows that the set of recurrent states of $\{ {Z_n}\}$ is precisely the kernel of $D$.References
- J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Mathematics, No. 42, Springer-Verlag, Berlin-New York, 1967. MR 0223483
- K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of random variables, Mem. Amer. Math. Soc. 6 (1951), 12. MR 40610 J. Larisse, Marches au hasard sur les demigroupes discrets: Classes essentielles, periodes, recurrence, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A339-A341. —, Marches au hasard sur les demigroupes discrets: Marches recurrentes et moyennes invariantes, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A413-A416.
- R. M. Loynes, Products of independent random elements in a topological group, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/63), 446–455. MR 156370, DOI 10.1007/BF00531876
- Per Martin-Löf, Probability theory on discrete semigroups, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 78–102. MR 184267, DOI 10.1007/BF00535486
- M. Rosenblatt, Limits of convolution sequences of measures on a compact topological semigroup, J. Math. Mech. 9 (1960), 293–305. MR 0118773, DOI 10.1512/iumj.1960.9.59017 —, Stationary measures for random walks on semi-groups, Semigroups (Proc. Sympos. Wayne State Univ., Detroit, Mich., 1968), Academic Press, New York, 1969, pp. 209-220. MR 41 #4666.
- Murray Rosenblatt, Markov processes. Structure and asymptotic behavior, Die Grundlehren der mathematischen Wissenschaften, Band 184, Springer-Verlag, New York-Heidelberg, 1971. MR 0329037
- T. C. Sun, A. Mukherjea, and N. A. Tserpes, On recurrent random walks on semigroups, Trans. Amer. Math. Soc. 185 (1973), 213–227. MR 346916, DOI 10.1090/S0002-9947-1973-0346916-4
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 599-605
- MSC: Primary 60J15; Secondary 60B15
- DOI: https://doi.org/10.1090/S0002-9939-1973-0317420-X
- MathSciNet review: 0317420