The growth of hypoelliptic polynomials and Gevrey classes
HTML articles powered by AMS MathViewer
- by E. Newberger and Z. Zieleźny
- Proc. Amer. Math. Soc. 39 (1973), 547-552
- DOI: https://doi.org/10.1090/S0002-9939-1973-0318660-6
- PDF | Request permission
Abstract:
For given hypoelliptic polynomials $P$ and $Q$, classes $\Gamma _P^\rho (\Omega )$ and $\Gamma _Q^\rho (\Omega )$ involving Gevrey type estimates on the successive iterates of the corresponding differential operators are defined. The equivalence of the inequality $|Q(\xi ){|^2} \leqq C{(1 + |P(\xi ){|^2})^h},\xi \in {R^n}$, and the inclusion $\Gamma _P^\rho (\Omega ) \subset \Gamma _Q^{\rho h}(\Omega )$ is proved.References
- Lars Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York, Inc., New York, 1969. Third revised printing. MR 0248435
- Lars Hörmander, On interior regularity of the solutions of partial differential equations, Comm. Pure Appl. Math. 11 (1958), 197–218. MR 106330, DOI 10.1002/cpa.3160110205
- Hikosaburo Komatsu, A characterization of real analytic functions, Proc. Japan Acad. 36 (1960), 90–93. MR 133599 F. Trèves, Linear partial differential equations with constant coefficients: Existence, approximation and regularity of solutions, Math. Appl., vol. 6, Gordon and Breach, New York, 1969. MR 37 #557.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 547-552
- MSC: Primary 35H05; Secondary 46E35
- DOI: https://doi.org/10.1090/S0002-9939-1973-0318660-6
- MathSciNet review: 0318660