Primitive ideals in von Neumann algebras
HTML articles powered by AMS MathViewer
- by Herbert Halpern
- Proc. Amer. Math. Soc. 39 (1973), 563-566
- DOI: https://doi.org/10.1090/S0002-9939-1973-0318906-4
- PDF | Request permission
Abstract:
For a von Neumann algebra it is shown that the set of primitive ideals containing a fixed maximal ideal of the center is sequentially closed in the order topology defined on the set of all ideals containing the maximal ideal. As a corollary, it is shown that every ideal generated by a sequence of elements of a von Neumann algebra and a maximal ideal of the center is either primitive or simple modulo a primitive ideal.References
- Jacques Dixmier, Sur les $C^{\ast }$-algèbres, Bull. Soc. Math. France 88 (1960), 95â112 (French). MR 121674
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs reprĂŠsentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Ăditeur-Imprimeur, Paris, 1964 (French). MR 0171173 â, Les algèbres dâopĂŠrateurs dans lâespace Hilbertien, Gauthier-Villars, Paris, 1969.
- Herbert Halpern, Irreducible module homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc. 140 (1969), 195â221. MR 241987, DOI 10.1090/S0002-9947-1969-0241987-7
- Herbert Halpern, Essential central spectrum and range for elements of a von Neumann algebra, Pacific J. Math. 43 (1972), 349â380. MR 324435
- Richard V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273â276. MR 85484, DOI 10.1073/pnas.43.3.273
- Fred B. Wright, A reduction for algebras of finite type, Ann. of Math. (2) 60 (1954), 560â570. MR 65037, DOI 10.2307/1969851
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 39 (1973), 563-566
- MSC: Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9939-1973-0318906-4
- MathSciNet review: 0318906