AN ELEMENTARY PROOF OF THE
MORSE-PALAIS LEMMA FOR BANACH SPACES

DANG DINH ANG AND VU TRONG TUAN

Palais established the following generalization of the Morse lemma:

Theorem (Morse-Palais Lemma [1]). Let V be a real Banach space, \mathcal{O} a convex neighborhood of the origin and let $f: \mathcal{O} \to \mathbb{R}$ be a C^{k+2} function ($k \geq 1$) having the origin as a nondegenerate critical point with $f(0) = 0$. Then there is a neighborhood U of the origin and a C^k diffeomorphism $\Phi: U \to \mathcal{O}$ with $\Phi(0) = 0$ and $(D\Phi)_0 = \text{id}_V$ (the identity map of V) such that for x in U, $f(\Phi(x)) = \frac{1}{2}(D^2f)_0(x, x)$.

Here and henceforth, the nonexplained notations are standard and are the same as in [1]. Palais' proof of the theorem draws on the theory of differential equations. We shall give of Palais' theorem a very elementary and short proof. Our proof, which only uses a direct application of the inverse mapping theorem, is even shorter and more elementary than Palais' proof of his theorem for the Hilbert space case [2]. The idea of our proof came from a close examination of Palais' proof for the Hilbert space case (loc. cit.)

We first observe that since 0 is a nondegenerate critical point of f, $(D^2f)_0$ is an isomorphism of V onto V^* and $(Df)_0 = 0$.

Remark 1. The problem is obviously equivalent to that of establishing the existence of a C^k-isomorphism Ψ of an open neighborhood U_1 of 0 contained in \mathcal{O} into \mathcal{O}, such that $\Psi(0) = 0$, $(D\Psi)_0 = \text{id}_V$ and

$$f(y) = \frac{1}{2}(D^2f)_0(\Psi(y), \Psi(y)), \quad y \text{ in } U_1.$$

For further use, we put $B = \frac{1}{2}(D^2f)_0$ and

$$E = \{ h: h \in L(V, V) \text{ and } B(h(x))y = B(h(y))x, \text{ x and y in } V \}.$$

Our proof of the Morse-Palais lemma depends on the following two simple lemmas.

Received by the editors January 24, 1973.

AMS (MOS) subject classifications (1970). Primary 58E05.

Key words and phrases. Morse-Palais lemma for Banach spaces, nondegenerate critical point.
Lemma 1. \(E \) is a closed subspace of \(L(V, V) \) and the map
\[
T: E \to L(V, V^*)
\]
defined by \(Th = B \circ h \) is an isomorphism of \(E \) onto \(L_6(V, V^*) \).

Proof. Let \(Sh = B \circ h, h \in L(V, V) \). Then \(S \) is an isomorphism of \(L(V, V) \) onto \(L(V, V^*) \) since \(B \) is an isomorphism. Clearly, \(T \) is the restriction of \(S \) to \(E \). It remains to show that \(S \) maps \(E \) onto \(L_6(V, V^*) \).

It is clear from the definition of \(E \) that \(S \) maps \(E \) into \(L_6(V, V^*) \). Now let \(C \) be in \(L_6(V, V^*) \) and let \(Sh = C \), i.e., \(B \circ h = C \). Then
\[
B(h(x))y = C(x)y = C(y)x = B(h(y))x.
\]
Hence \(h \) is in \(E \). Q.E.D.

Lemma 2. Let \(\theta: E \to L_6(V, V^*) \) be the map defined by
\[
(\theta h)(x)y = B(h(x))h(y).
\]
Then \(\theta \) is a \(C^\infty \)-isomorphism of a neighborhood of \(\text{id}_V \) onto a neighborhood of \(B \) and \(\theta(\text{id}_V) = B \).

Proof. By direct computation
\[
[\theta(h + k) - \theta(h)](x)y = B(h(x))k(y) + B(k(x))h(y) + B(k(x))(k(y)).
\]
Hence
\[
(D\theta)_h(k)(x)y = B(h(x))k(y) + B(k(x))h(y).
\]
Thus \(D\theta \) is linear, and hence \(\theta \) is \(C^\infty \). Furthermore
\[
(D\theta)_{\text{id}_V} k = 2B \circ k = 2Tk, \quad k \in E.
\]
By Lemma 1, \((D\theta)_{\text{id}_V} \) is therefore an isomorphism, and hence, Lemma 2 follows from the inverse mapping theorem. Q.E.D.

Proof of the Morse-Palais Lemma. By repeated applications of the fundamental theorem of calculus, and using the fact that \(f(0) = 0 \), \((Df)_0 = 0 \), we have
\[
f(y) = \int_0^1 \int_0^1 (D^2f)_{ts}t \, ds \, dt \, y, \quad y \in \varnothing.
\]
Put
\[
G(y) = \int_0^1 \int_0^1 (D^2f)_{ts}t \, ds \, dt.
\]
Then \(G \) is a \(C^k \)-map of \(\varnothing \) into \(L_6(V, V^*) \) and \(G(0) = \frac{1}{2}(D^2f)_0 = B \).

By Lemma 2, there exists an open neighborhood \(W \) of \(B \) which is taken by the \(C^\infty \)-map \(\theta^{-1} \) onto an open neighborhood of \(\text{id}_V \). Now \(G \) is in particular continuous, and hence maps an open neighborhood \(U' \) of \(0 \).
contained in \mathcal{O} into W. Put
\[A(y) = \theta^{-1}(G(y)), \quad \Psi(y) = A(y)y \quad \text{for } y \text{ in } U'. \]
Note that $A(y)$ is in $L(V, V)$. It is readily seen that A and Ψ are C^k on U', and $A(0) = \text{id}_V$ and $\Psi(0) = 0$.

Now
\[(D\Psi)_y = A(y) + (DA)_y, \quad (D\Psi)_0 = A(0) = \text{id}_V. \]

Hence, by the inverse mapping theorem, Ψ maps an open neighborhood U_1 of 0 contained in U' (hence contained in \mathcal{O}) onto an open neighborhood U of 0 contained in \mathcal{O}. Furthermore
\[
\begin{align*}
\theta(y) &= G(y)(y)y = \theta(A(y))(y)y \\
&= B(A(y))y(A(y))y = B(\Psi(y), \Psi(y)), \quad y \text{ in } U_1.
\end{align*}
\]

The theorem follows now from Remark 1 above.

REFERENCES

Faculty of Science and Faculty of Pedagogy, University of Saigon, Saigon, Vietnam

Current address: 57 Duy-Tan, Saigon, Vietnam