Palais established the following generalization of the Morse lemma:

Theorem (Morse-Palais Lemma [1]). Let V be a real Banach space, \emptyset a convex neighborhood of the origin and let $f : \emptyset \to \mathbb{R}$ be a C^{k+2} function ($k \geq 1$) having the origin as a nondegenerate critical point with $f(0) = 0$. Then there is a neighborhood U of the origin and a C^k diffeomorphism $\Phi : U \to \emptyset$ with $\Phi(0) = 0$ and $(D\Phi)_0 = \text{id}_V$ (the identity map of V) such that for x in U, $f(\Phi(x)) = \frac{1}{2}(D^2f)_0(x, x)$.

Here and henceforth, the nonexplained notations are standard and are the same as in [1]. Palais' proof of the theorem draws on the theory of differential equations. We shall give of Palais' theorem a very elementary and short proof. Our proof, which only uses a direct application of the inverse mapping theorem, is even shorter and more elementary than Palais' proof of his theorem for the Hilbert space case [2]. The idea of our proof came from a close examination of Palais' proof for the Hilbert space case (loc. cit.)

We first observe that since 0 is a nondegenerate critical point of f, $(D^2f)_0$ is an isomorphism of V onto V^* and $(Df)_0 = 0$.

Remark 1. The problem is obviously equivalent to that of establishing the existence of a C^k-isomorphism Ψ of an open neighborhood U_1 of 0 contained in \emptyset into \emptyset, such that $\Psi(0) = 0$, $(D\Psi)_0 = \text{id}_V$ and

$$f(y) = \frac{1}{2}(D^2f)_0(\Psi(y), \Psi(y)), \quad y \text{ in } U_1.$$

For further use, we put $B = \frac{1}{2}(D^2f)_0$ and

$$E = \{h : h \in L(V, V) \text{ and } B(h(x))y = B(h(y))x, \text{ } x \text{ and } y \text{ in } V\}.$$

Our proof of the Morse-Palais lemma depends on the following two simple lemmas.
Lemma 1. E is a closed subspace of $L(V, V)$ and the map

$$T : E \rightarrow L(V, V^*)$$

defined by $Th = B \circ h$ is an isomorphism of E onto $L_s(V, V^*)$.

Proof. Let $Sh = B \circ h$, h in $L(V, V)$. Then S is an isomorphism of $L(V, V)$ onto $L(V, V^*)$ since B is an isomorphism. Clearly, T is the restriction of S to E. It remains to show that S maps E onto $L_s(V, V^*)$.

It is clear from the definition of E that S maps E into $L_s(V, V^*)$. Now let C be in $L_s(V, V^*)$ and let $Sh = C$, i.e., $B \circ h = C$. Then

$$B(h(x))y = C(x)y = C(y)x = B(h(y))x.$$

Hence h is in E. Q.E.D.

Lemma 2. Let $\theta : E \rightarrow L_s(V, V^*)$ be the map defined by

$$(\theta h)(x)y = B(h(x))h(y).$$

Then θ is a C^∞-isomorphism of a neighborhood of id_V onto a neighborhood of B and $\theta(id_v) = B$.

Proof. By direct computation

$$[\theta(h + k) - \theta(h)](x)y = B(h(x))k(y) + B(k(x))h(y) + B(k(x))(k(y)).$$

Hence

$$(D\theta)_h(k)(x)y = B(h(x))k(y) + B(k(x))h(y).$$

Thus $D\theta$ is linear, and hence θ is C^∞. Furthermore

$$(D\theta)_{id_v} k = 2B \circ k = 2Tk, \quad k \in E.$$

By Lemma 1, $(D\theta)_{id_v}$ is therefore an isomorphism, and hence, Lemma 2 follows from the inverse mapping theorem. Q.E.D.

Proof of the Morse-Palais Lemma. By repeated applications of the fundamental theorem of calculus, and using the fact that $f(0) = 0$, $(Df)_0 = 0$, we have

$$f(y) = \int_0^1 \int_0^1 (D^2f)_{xu} ds \, dt(y)y, \quad y \in \mathcal{O}.$$

Put

$$G(y) = \int_0^1 \int_0^1 (D^2f)_{xu} ds \, dt.$$

Then G is a C^k-map of \mathcal{O} into $L_s(V, V^*)$ and $G(0) = \frac{1}{2}(D^2f)_0 = B$.

By Lemma 2, there exists an open neighborhood W of B which is taken by the C^∞-map θ^{-1} onto an open neighborhood of id_V. Now G is in particular continuous, and hence maps an open neighborhood U' of 0
contained in \(\emptyset \) into \(W \). Put
\[
A(y) = \theta^{-1}(G(y)), \quad \Psi'(y) = A(y)y \quad \text{for } y \text{ in } U'.
\]
Note that \(A(y) \) is in \(L(V, V) \). It is readily seen that \(A \) and \(\Psi' \) are \(C^k \) on \(U' \), and \(A(0) = \text{id}_V \) and \(\Psi'(0) = 0 \).

Now
\[
(D\Psi)'_y = A(y) + (DA)'_y, \quad (D\Psi)'_0 = A(0) = \text{id}_V.
\]
Hence, by the inverse mapping theorem, \(\Psi' \) maps an open neighborhood \(U_1 \) of \(0 \) contained in \(U' \) (hence contained in \(\emptyset \)) onto an open neighborhood \(U \) of \(0 \) contained in \(\emptyset \). Furthermore
\[
f(y) = G(y)(y)y = \theta(A(y))(y)y
= B(A(y))y(A(y))y = B(\Psi'(y), \Psi'(y)), \quad y \text{ in } U_1.
\]
The theorem follows now from Remark 1 above.

REFERENCES

Faculty of Science and Faculty of Pedagogy, University of Saigon, Saigon, Vietnam

Current address: 57 Duy-Tan, Saigon, Vietnam