Some totally real minimal surfaces in $CP^{2}$
HTML articles powered by AMS MathViewer
- by Chorng-shi Houh
- Proc. Amer. Math. Soc. 40 (1973), 240-244
- DOI: https://doi.org/10.1090/S0002-9939-1973-0317189-9
- PDF | Request permission
Abstract:
Totally real minimal surfaces with constant scalar normal curvature in $C{P^2}$ are totally geodesic or nonpositive curved surfaces.References
- Bang-yen Chen and Gerald D. Ludden, Riemann surfaces in complex projective spaces, Proc. Amer. Math. Soc. 32 (1972), 561–566. MR 290262, DOI 10.1090/S0002-9939-1972-0290262-9
- S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 59–75. MR 0273546 S. T. Yau, Submanifolds with constant mean curvature. I (to appear).
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 40 (1973), 240-244
- MSC: Primary 53A10; Secondary 53C45
- DOI: https://doi.org/10.1090/S0002-9939-1973-0317189-9
- MathSciNet review: 0317189