EXTENDING A JORDAN RING HOMOMORPHISM

ROBERT LEWAND

Abstract. In this paper a homomorphism from an ideal \(\mathcal{B} \) of a quadratic Jordan algebra \(\mathcal{J} \) without 2-torsion over a ring \(\Phi \) onto a unital quadratic Jordan algebra \(\mathcal{J}' \) without 2-torsion is extended to a homomorphism from \(\mathcal{J} \) to \(\mathcal{J}' \). We then show if \(D \) is any class of quadratic Jordan algebras without 2-torsion, then the upper radical property determined by \(D \) is hereditary.

1. Preliminaries. We adopt the notation and terminology of an earlier paper [3] concerning quadratic Jordan algebras and hereditary radical properties. For a discussion of upper radical properties the reader is referred to [1] and [2]. Basically, given a class of rings \(D \) with the property that any nonzero ideal of a ring of \(D \) can be mapped homomorphically onto a ring of \(D \), then \(D \) can be extended to a class of all \(D \) semisimple rings: a ring is \(D \) radical if it cannot be mapped homomorphically onto a ring of \(D \); a ring without \(D \) radical ideals is \(D \) semisimple.

2. Two theorems.

Theorem 1. Given a quadratic Jordan algebra \(\mathcal{J} \) with ideal \(\mathcal{B} \) and a unital quadratic Jordan algebra \(\mathcal{J}' \) without 2-torsion, a homomorphism \(\varphi \) from \(\mathcal{B} \) onto \(\mathcal{J}' \) can be extended to a homomorphism \(\bar{\varphi} : \mathcal{J} \rightarrow \mathcal{J}' \).

Proof. Since \(\varphi \) is an onto homomorphism, some element of \(\mathcal{B} \), say \(b \), maps into 1. Define \(\bar{\varphi} : \mathcal{J} \rightarrow \mathcal{J}' \) by \(\bar{\varphi}(a) = \varphi(U_b a) \). \(\bar{\varphi} \) is clearly linear. For \(b' \in \mathcal{B} \),

\[
\bar{\varphi}(b') = \varphi(U_b b') = U_{\varphi(b)} \varphi(b') = U_1 \varphi(b') = \varphi(b').
\]

It is therefore established that \(\bar{\varphi} \) extends \(\varphi \). It now remains to show that \(\bar{\varphi} \) is indeed a homomorphism. Since \(2U_x = V_x^2 - V_x^2 \), under the assumption that \(\mathcal{J}' \) has no 2-torsion, it is sufficient to show that \(\bar{\varphi} \) preserves the \(V \) operator, i.e. to show \(\bar{\varphi}(a \circ a') = \bar{\varphi}(a) \circ \bar{\varphi}(a') \) for \(a, a' \in \mathcal{J} \). For then \(\bar{\varphi}(2U_{x,y}) = 2U_{\varphi(x), \varphi(y)} \bar{\varphi}(y) \) and \(2\{\varphi(U_{x,y}) - U_{\varphi(x), \varphi(y)} \bar{\varphi}(y)\} = 0 \) implies \(\bar{\varphi}(U_{x,y}) - U_{\varphi(x), \varphi(y)} \bar{\varphi}(y) = 0 \). First a simplification: it will be convenient to express \(U_b U_b V_{a a'} \) as

\[
U_b[(b \circ a) \circ (b \circ a')] - (U_b a) \circ (U_b a') - b \circ \{b a U_b a'\},
\]

Received by the editors November 16, 1972.

Key words and phrases. Quadratic Jordan algebra, radical property.

© American Mathematical Society 1973

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

57
an identity which is easily verified in the case of special Jordan algebras and is therefore true for all Jordan algebras as a consequence of Macdonald’s theorem [4]. Now, since \(\varphi(b') = \varphi(b') = \varphi(U_b b') \) for \(b' \in S \),
\[
\varphi(a \circ a') = \varphi(U_b(a \circ a')) = \varphi(U_b U_b(a \circ a')) = \varphi(U_b[(b \circ a) \circ (b \circ a')]) - (U_b a) \circ (U_b a') - b \circ \{b a U_b a'\}).
\]
Consider these terms one at a time.
\[
\varphi(U_b[(b \circ a) \circ (b \circ a')]) = \varphi(U_b[(V_b a) \circ (V_b a')]) = \varphi((V_b a) \circ (V_b a'))
\]
\[
= \varphi(V_b a) \circ \varphi(V_b a') = \varphi(U_b V_b a') \circ \varphi(U_b V_b a') = \varphi(V_b U_b a') \circ \varphi(V_b U_b a')
\]
\[
= \psi(U_b a) \circ \psi(U_b a') = 2 \psi(a) \circ 2 \psi(a') = 4(\psi(a) \circ \psi(a')).
\]
Next,
\[
\varphi[(U_b a) \circ (U_b a')] = \varphi(U_b a) \circ \varphi(U_b a') = \psi(a) \circ \psi(a').
\]
Finally,
\[
\varphi(b \circ \{b a U_b a'\}) = \varphi(V_b V_b a U_b a') = \varphi(V_b U_b U_b a a')
\]
\[
= \varphi(U_b(U_{b a} a)(b \circ a') + U_{b U_{b a} a}(b \circ a) - 2(U_b a) \circ (U_b a'))
\]
(by Macdonald’s theorem)
\[
= \varphi(U_b(U_{b a} a)(b \circ a') + U_{b U_{b a} a}(b \circ a) - 2(\psi(a) \circ \psi(a'))
\]
\[
= \varphi(U_b a)(U_b a') + (U_b a') \circ (U_b U_b a')
\]
\[
+ \varphi(U_b[(U_b a) \circ (U_b a')]) + (U_b a) \circ (U_b U_b a') - 2(\psi(a) \circ \psi(a'))
\]
(again using Macdonald’s Theorem)
\[
= 2(\psi(a) \circ \psi(a')).
\]
Combining these results, \(\varphi(a \circ a') = \psi(a) \circ \psi(a') \). \(\varphi \) is therefore a homomorphism and the proof of the theorem is complete.

Theorem 2. If \(D \) is any class of quadratic Jordan rings with unit element over a ring \(\Phi \) and no 2-torsion, satisfying the condition that any nonzero ideal of a ring of \(D \) can be mapped homomorphically onto a ring of \(D \), then the upper radical property determined by \(D \) is hereditary.

Proof. Let \(\mathcal{J} \) be a \(D \) radical ring and let \(\mathcal{B} \) be a nonzero ideal of \(\mathcal{J} \). Assume \(\mathcal{B} \) is not a \(D \) radical ring. Then \(\mathcal{B} \) can be mapped homomorphically onto some ring \(\mathcal{G} \) in the class \(D \). By the above theorem \(\mathcal{J} \) is also homomorphic to \(\mathcal{G} \) which contradicts \(\mathcal{J} \) being \(D \) radical.

References

Department of Mathematics, Windham College, Putney, Vermont 05346