## The projective class group of the fundamental group of a surface is trivial

HTML articles powered by AMS MathViewer

- by Koo Guan Choo PDF
- Proc. Amer. Math. Soc.
**40**(1973), 42-46 Request permission

## Abstract:

Let $D = {F_1} \times {F_2} \times \cdots \times {F_n}$ be a direct product of $n$ free groups ${F_1},{F_2}, \cdots ,{F_n},\alpha$ an automorphism of $D$ which leaves all but one of the noncyclic factors in $D$ pointwise fixed and $T$ an infinite cyclic group. Let $D{ \times _\alpha }T$ be the semidirect product of $D$ and $T$ with respect to $\alpha$. We prove that the Whitehead group of $D{ \times _\alpha }T$ and the projective class group of the integral group ring $Z(D{ \times _\alpha }T)$ are trivial. The second result implies that the projective class group of the integral group ring over the fundamental group of a surface is trivial.## References

- Hyman Bass,
*Projective modules over free groups are free*, J. Algebra**1**(1964), 367–373. MR**178032**, DOI 10.1016/0021-8693(64)90016-X - H. Bass, A. Heller, and R. G. Swan,
*The Whitehead group of a polynomial extension*, Inst. Hautes Études Sci. Publ. Math.**22**(1964), 61–79. MR**174605** - K. G. Choo, K. Y. Lam, and E. Luft,
*On free product of rings and the coherence property*, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 135–143. MR**0360707** - F. T. Farrell and W.-C. Hsiang,
*A formula for $K_{1}R_{\alpha }\,[T]$*, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 192–218. MR**0260836** - F. T. Farrell,
*The obstruction to fibering a manifold over a circle*, Indiana Univ. Math. J.**21**(1971/72), 315–346. MR**290397**, DOI 10.1512/iumj.1971.21.21024 - S. M. Gersten,
*On class groups of free products*, Ann. of Math. (2)**87**(1968), 392–398. MR**224655**, DOI 10.2307/1970588 - J. Milnor,
*Whitehead torsion*, Bull. Amer. Math. Soc.**72**(1966), 358–426. MR**196736**, DOI 10.1090/S0002-9904-1966-11484-2 - John Stallings,
*Whitehead torsion of free products*, Ann. of Math. (2)**82**(1965), 354–363. MR**179270**, DOI 10.2307/1970647

## Additional Information

- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**40**(1973), 42-46 - MSC: Primary 18G99; Secondary 55A05
- DOI: https://doi.org/10.1090/S0002-9939-1973-0323869-1
- MathSciNet review: 0323869