ON HYPERFINITE W^* ALGEBRAS

PAUL WILLIG

ABSTRACT. If \mathcal{A} is a W^* algebra on separable Hilbert space H, and if $\mathcal{A}(\lambda)$ are the factors in the direct integral decomposition of \mathcal{A}, then $f = \{\lambda | \mathcal{A}(\lambda) \text{ is hyperfinite}\}$ is μ-measurable, and \mathcal{A} is hyperfinite if and only if $\mathcal{A}(\lambda)$ is hyperfinite μ-a.e.

Let \mathcal{A} be a W^* algebra on separable Hilbert space H. \mathcal{A} is hyperfinite if there is an increasing sequence of finite dimensional W^* subalgebras \mathcal{A}_n of \mathcal{A} whose union generates \mathcal{A}. Let $\mathcal{A} = \int_{\Lambda} \bigoplus \mathcal{A}(\lambda) \mu(d\lambda)$ denote the direct integral decomposition of \mathcal{A} into factors, and let $f = \{\lambda | \mathcal{A}(\lambda) \text{ is hyperfinite}\}$. We prove in this paper that f is μ-measurable, and that \mathcal{A} is hyperfinite if and only if $\mu(\Lambda - f) = 0$.

In dealing with direct integrals, we use the following notation (see [2], [3] for details). K will denote the underlying separable Hilbert space of H. Letting d denote a metric on $B(K)$ which induces the strong operator topology on bounded subsets of $B(K)$ [2, Lemma I.4.9], define $M(T) = d(T, 0)$. Then a bounded sequence $T_n \in B(K)$ converges strongly to 0 if and only if $M(T_n) \to 0$.

By S we denote the unit ball of $B(K)$ taken with the strong $*$-topology, S_n, n an integer, denotes the n-fold Cartesian product of S. Finally, let $B_n \in \mathcal{A}$ be a sequence in the unit ball of \mathcal{A} such that $\{B_n(\lambda)\}$ is strong-$*$ dense in the unit ball of $\mathcal{A}(\lambda)$ μ-a.e., and such that $B_n(\lambda)$ is strong-$*$ continuous in λ.

Before proving our main results, we consider the structure of a finite dimensional W^* algebra B. Since any finite dimensional linear space of operators is strongly closed, B is finite dimensional if and only if there is a finite set of operators T_1, \ldots, T_n such that each product $T_i T_j$ and each adjoint T_i^* is a linear combination of the T_M.

By the Kaplansky Density Theorem, it suffices for these operators to be strong limits of such linear combinations having bounded norms and coefficients in C_0, the set of complex numbers with rational real and imaginary parts. We apply this idea to define hyperfiniteness through countably many conditions. Indeed, if \mathcal{A} is hyperfinite, for each n there

Received by the editors October 23, 1972.

Key words and phrases. Hyperfinite, W^* algebra, direct integral decomposition.
are \(n \) operators whose linear span is a finite dimensional \(W^\ast \)-algebra \(\mathcal{A}_n \) such that the \(\mathcal{A}_n \) form an increasing sequence (although not necessarily strictly increasing) whose union generates \(\mathcal{A} \). This explains the conditions in Theorem 1.

Theorem 1. Let \(\mathcal{J} = \{ \lambda | A(\lambda) \text{ is hyperfinite} \} \). Then \(\mathcal{J} \) is \(\mu \)-measurable.

Proof. Let \(\mathcal{P} = A \times \mathbb{R}_+, \mathcal{I}_n \), let \(\pi \) denote the projection of \(\mathcal{P} \) onto \(A \), and let \(T(n) = (T(n, 1), \cdots, T(n, n)) \) denote a typical element of \(\mathcal{I}_n \). Consider the following conditions on elements \([X, T(n)]\) of \(\mathcal{I}_n \):

1. \(T(n, m) \in \mathcal{A}(\lambda) \).
2. For some \(T = \sum_{k=1}^n a_k T(n, k), a_k \in C_0, T \in \mathcal{I}, \) and \(M(T(n, i) T(j, j) - T) < 1/r \).
3. For some \(T = \sum_{k=1}^n b_k T(n, k), b_k \in C_0, T \in \mathcal{I}, \) and \(M(T(n, i)^* - T) < 1/r \).
4. For some \(T = \sum_{k=1}^{n+1} c_k T(n+1, k), c_k \in C_0, T \in \mathcal{I}, \) and \(M(T(n, i) T) < 1/r \).
5. For some \(T = \sum_{k=1}^n d_k T(p, k), d_k \in C_0, T \in \mathcal{I}, \) and \(M(B_n(X) - T) < 1/r \).

It is easy to see that if \(\mathcal{J}' \) is the subset of \(\mathcal{P} \) for which condition (1) holds for every \(m \) and \(n \) and the remaining conditions hold for every \(r \), etc. for appropriate coefficients, then \(\mathcal{J}' \) is \(\mu \)-measurable and \(\pi(\mathcal{J}') \) differs from \(\mathcal{J} \) by a \(\mu \)-null set. Hence, by [2, Lemma 1.4.6], \(\mathcal{J} \) is \(\mu \)-measurable. Q.E.D.

Theorem 2. \(\mathcal{A} \) is hyperfinite if and only if \(\mu(\Lambda - \mathcal{J}) = 0 \).

Proof. Suppose \(\mathcal{A} \) is hyperfinite. Then for each \(n \) there is a finite dimensional \(W^\ast \)-subalgebra \(A_n \) of \(\mathcal{A} \) which is the linear span of \(T(n, 1), \cdots, T(n, n) \in \mathcal{A} \); these algebras form an increasing sequence whose union generates \(\mathcal{A} \). Now let \(A_n(\lambda) \) be the \(W^\ast \)-algebra generated by \(T(n, i)(\lambda), i=1, \cdots, n \). By [5, Lemma 1] it follows that \(A_n(\lambda) \) is an increasing sequence of finite dimensional \(W^\ast \)-algebras contained in \(A(\lambda) \) for \(\mu \)-a.e. \(\lambda \). Since \(B_n \in \mathcal{A} \), and the \(A_n \) generate \(\mathcal{A} \), a second application of [5, Lemma 1] shows that the \(A_n(\lambda) \) generate \(\mathcal{A}(\lambda) \) \(\mu \)-a.e. Thus \(\mu(\Lambda - \mathcal{J}) = 0 \).

Conversely, suppose that \(\mu(\Lambda - \mathcal{J}) = 0 \). Using the proof of Theorem 1 and [2, Lemma 1.4.7] we can construct an increasing sequence of finite dimensional \(W^\ast \)-subalgebras \(A_n \) of \(\mathcal{A} \) such that \(A_n(\lambda) \) generate \(\mathcal{A}(\lambda) \) \(\mu \)-a.e. It follows that \(\mathcal{A} \) is generated by the \(A_n \) and \(A^\ast \), the center of \(\mathcal{A} \). But \(A^\ast \) is hyperfinite [4, Lemma 2], and if \(C_n \) is an increasing sequence of finite dimensional \(W^\ast \)-algebras generating \(A^\ast \), then clearly for each \(n \) the algebra \(D_n \) generated by \(A_n \) and \(C_n \) is finite dimensional. Since \(\mathcal{A} \) is generated by the increasing sequence \(D_n \), the result is proved. Q.E.D.
We remark in conclusion that the idea of hyperfinite algebras was introduced by Murray and von Neumann in [1] to treat factors of type II$_1$. They proved that in this case the \mathcal{A}_n could be chosen to be factors of type I$_{2n}$. This result has recently been extended to hyperfinite factors of types II$_{\infty}$ and III by E. J. Woods and G. Elliott (private communication). It is easy to see that our methods could then show that, modulo the center \mathcal{Z}, \mathcal{A} hyperfinite is generated by a sequence of factors of type I$_{2n}$.

Bibliography

Department of Mathematics, Stevens Institute of Technology, Hoboken, New Jersey 07030