THE NUMBER OF CONTINUA

F. W. LOZIER AND R. H. MARTY

Abstract. It is shown there are precisely 2^n topologically distinct continua of weight n and power m where $p \leq n \leq m$ and p is the smallest cardinal for which there is a continuum of power m and weight p. In particular, there are precisely 2^m topologically distinct continua of power m.

All spaces considered are assumed to be Hausdorff and all cardinals infinite. A continuum is a compact connected space. It follows from a classical result of P. Alexandroff and P. Urysohn ([1, p. 105]: The weight of a compact space never exceeds its power) that there are at most 2^m topologically distinct compact spaces of power m. (There are just 2^m collections, of cardinality at most m, of subsets of a set of cardinality m.) The following sharper result will be useful.

Proposition 1. There are at most 2^n topologically distinct compact spaces of weight n.

Proof. Suppose $\{X_\xi : \xi \in \Xi\}$ is a collection of topologically distinct compact spaces of weight n. For each $\xi \in \Xi$, let \mathcal{B}_ξ be a base of cardinality n for X_ξ. For each pair $U, V \in \mathcal{B}_\xi$ with $U \cap V = \emptyset$, let $f_{U, V}$ be an element of $C(X_\xi)$ such that $f_{U, V}|U = 1$ and $f_{U, V}|V = 0$. Let \mathcal{F}_ξ denote the subset of $C(X_\xi)$ consisting of all these $f_{U, V}$'s together with all constant functions $f(x) = r$ with r rational. Then $\text{card } \mathcal{F}_\xi \leq n$ and, by the Stone-Weierstrass Theorem, the smallest closed subring of $C(X_\xi)$ containing \mathcal{F}_ξ is $C(X_\xi)$, where $C(X_\xi)$ is given the usual metric.

Now let Z be a fixed discrete space of power n and let $C^*(Z)$ have the usual metric. For each $\xi \in \Xi$, choose $f_\xi : Z \to X_\xi$ such that $f_\xi[Z]$ is dense in X_ξ, and let $F_\xi : C(X_\xi) \to C^*(Z)$ be the induced map of f_ξ; i.e., such that $F_\xi(f) = f \circ f_\xi$ for every $f \in C(X_\xi)$. Then each F_ξ is a ring isomorphism so that, for $\xi \neq \xi'$, $F_\xi[C(X_\xi)]$ and $F_{\xi'}[C(X_{\xi'})]$ are nonisomorphic, and hence distinct, subrings of $C^*(Z)$. Furthermore, each F_ξ is an isometry; in particular, since $C(X_\xi)$ is complete, $F_\xi[C(X_\xi)]$ is a closed subspace of
$C^*(Z)$. Thus the smallest closed subring of $C^*(Z)$ containing $F_{\xi}[[F]]$ is $F_{\xi}[C(X_{\xi})]$ for every $\xi \in \Xi$. Thus for $\xi \neq \xi'$, $F_{\xi}[[F]] \neq F_{\xi'}[[F]]$. Consequently, \{ $F_{\xi}[[F]] : \xi \in \Xi$ \} is a collection of distinct subsets of $C^*(Z)$ of cardinality at most n. But $C^*(Z)$ has cardinality 2^n and hence at most 2^n subsets of cardinality at most n. Thus card $\Xi \leq 2^n$.

Proposition 2. For every cardinal $m \geq 2^{\aleph_0}$, there are 2^m topologically distinct continua of power m and weight m.

Proof. Let L denote the long line constructed on the set S of all ordinals $\beta \leq \omega(m)$, the initial ordinal of cardinality m. We regard S as a subset of L. For each $\beta \in S$, let (X_{β}, x_{β}) be either $(I^2, (0,0))$ or $(I^3, (0,0,0))$, where $I = [0,1] \subseteq R$. Let X be the space obtained by attaching each X_{β} to L by identifying $x_{\beta} \in X_{\beta}$ with $\beta \in S$, and weakening the usual quotient topology by requiring that any neighborhood of a limit ordinal $\gamma \in S$ contains $\bigcup \{X_{\beta} : \alpha < \beta < \gamma \}$ for some $\alpha < \gamma$. Then X is a continuum of power m and weight m.

Now suppose X' were another such space constructed in the same way but with a conceivably different choice of the (X'_{β}, x'_{β})'s, and suppose $f : X \rightarrow X'$ were an onto homeomorphism. Let Y denote the set of all points of X at which the dimension is 1; then $L = \overline{Y}$ and $S = \overline{Y} \cap (X - Y)$. Similarly, $L' = \overline{Y}'$ and $S' = \overline{Y}' \cap (X' - Y')$ in X'. It is immediate that $f[I] = Y'$, and hence $f[L] = L'$ and $f[S] = S'$. But then $f|L$ is monotone, so that $f|S$ is order-preserving and hence the identity. Now consider the subspace $Z = \bigcup \{X_{\beta} : \beta \in S\}$ of X, which is the disjoint union of the connected subspaces X_{β}, and the analogous subspace Z' of X'. Because $Z = (X - L) \cup S$ and $Z' = (X' - L') \cup S'$, it follows that $f[Z] = Z'$; in particular, f maps each X_{β} onto some X'_{β}. Because $f|S$ is the identity, it follows that $f[X_{\beta}] = X'_{\beta}$ for every $\beta \in S$. Therefore, since I^2 and I^3 are not homeomorphic, it follows that $X'_{\beta} = X_{\beta}$ for every $\beta \in S$.

Finally, since there are 2^m different ways to choose the X_{β}'s there are 2^m topologically distinct continua of power m and weight m.

Proposition 3. For every cardinal $m \geq 2^{\aleph_0}$, let p be the smallest cardinal for which there is a continuum of power m and weight p. Then for every cardinal n with $p \leq n \leq m$, there are 2^n topologically distinct continua of power m and weight n.

Proof. Let K be a continuum of power m and weight p. For any cardinal n with $p \leq n \leq m$, let L be the long line constructed on the set of all ordinals $\beta \leq \omega(n)$. Construct X as in Proposition 2; but take X_0 to be $K \times I^2$ and take X_{β}, for $\beta > 0$, to be either I^2 or I^3. The argument is then similar to Proposition 2.
Remarks. For the case $m = 2^\aleph_0$, the requirement that $X_0 = K \times I^2$ can be dispensed with. Furthermore, for the case $m = 2^\aleph_0$, $n = \aleph_0$, all of the constructed continua can be embedded in the plane by choosing X_q to be either I^2 or an annulus. If $m = 2^q$ for some q, then p is simply the smallest such q; for then I^p is a continuum of power m and weight p. In particular, if we assume the Generalized Continuum Hypothesis, then the only continua of power m other than those of weight m are (for nonlimit cardinals m) the 2^n topologically distinct continua of weight n where $2^n = m$.

The authors wish to express their gratitude to S. Mrowka and the referee for their helpful suggestions.

References