ON PRODUCTS OF POWERS IN GROUPS

ROGER LYNDON, THOMAS MCDONOUGH AND MORRIS NEWMAN

Abstract. In this note we show that a product of Nth powers in a group cannot in general be expressed as a product of fewer Nth powers. This extends a result of Lyndon and Newman [1].

Theorem. Let F be a free group of rank n with basis x_1, \cdots, x_n, let u_1, \cdots, u_m be elements of F, and let N be an integer greater than 1. If

\[x_1^N \cdots x_n^N = u_1^N \cdots u_m^N, \]

then $m \geq n$.

For the proof it will suffice to exhibit a group G and elements x_1, \cdots, x_n in G such that, if u_1, \cdots, u_m are any elements of G satisfying (*), then $m \geq n$.

Choose a prime p dividing N and write $N = qM$, where $q = p^e$ for some $e \geq 1$ and p does not divide M. Let P be the ring of polynomials over $GF(p)$ in noncommuting indeterminates X_1, \cdots, X_n. Let \mathcal{I} be the ideal in P generated by X_1, \cdots, X_n, and let $R = P[\mathcal{I}^{q+1}]$; we shall write X_i also for the image of X_i in R. Let G be the group of units in R. (Thus G is a finite group of exponent pq.) The elements $x_i = 1 + X_i$ belong to G, since they have inverses $x_i^{-1} = 1 - X_i + X_i^2 - \cdots + (-1)^qX_i^q$.

Now $X_i^q = (1 + X_i)^q = 1 + X_i$, whence $x_i^N = x_i^{qM} = (1 + X_i)^M = 1 + Mx_i^q$. It follows that

\[x_1^N \cdots x_n^N = 1 + M \sum_{i=1}^nx_i^q. \]

Let u_1, \cdots, u_m be in G. We may write $u_j = 1 + \sum \alpha_{ji}X_i + D_j$ where D_j is in \mathcal{I}^2. Then

\[u_j^q = (1 + \sum \alpha_{ji}X_i + D_j)^q = 1 + (\sum \alpha_{ji}X_i + D_j)^q = 1 + (\sum \alpha_{ji}X_i)^q = 1 + \sum \alpha_{ji}X_i \cdots \alpha_{ji}X_i \cdots X_i, \]

Received by the editors January 15, 1973.

AMS (MOS) subject classifications (1970). Primary 20F10, 20E05.

1 The author wishes to acknowledge the support of the National Science Foundation, and also the hospitality of the University of Birmingham.
summed over all \(i_1, \ldots, i_q \) such that \(1 \leq i_1, \ldots, i_q \leq n \). Therefore
\[
 u_j^M = 1 + M \sum_{i_1, \ldots, i_n} \sum_{j=1}^{m} \alpha_{j i_1} \cdots \alpha_{j i_q} X_{i_1} \cdots X_{i_q}.
\]
It follows that
\[
 u_1^N \cdots u_m^N = 1 + M \sum_{i_1, \ldots, i_n} \sum_{j=1}^{m} \alpha_{j i_1} \cdots \alpha_{j i_q} X_{i_1} \cdots X_{i_q}.
\]

Assume that (*) holds. Equating the coefficients of \(X_i^q \) for each \(i \) in (1) and (2) gives
\[
 M = M \sum_{j=1}^{m} \alpha_{j i_1}^q \quad (1 \leq i \leq n).
\]
Equating the coefficients of \(X_i^{q-1}X_h \) for \(i \neq h \) gives
\[
 0 = M \sum_{j=1}^{m} \alpha_{j i_1}^{q-1} \alpha_{j h} \quad (1 \leq i, h \leq n; i \neq h).
\]
Since \(p \) does not divide \(M \), we may divide (3) and (4) through by \(M \), obtaining
\[
 \sum_{j=1}^{m} \alpha_{j i_1}^q = 1 \quad (1 \leq i \leq n),
\]
\[
 \sum_{j=1}^{m} \alpha_{j i_1}^{q-1} \alpha_{j h} = 0 \quad (1 \leq i, h \leq n; i \neq h).
\]
Let \(A = (\alpha_{j i_1}^q) \) and \(B = (\alpha_{j i_1}) \), \(m \)-by-\(n \) matrices over \(GF(p) \). Then (3') and (4') assert that
\[
 A^T B = I_n
\]
where \(A^T \) is the transpose of \(A \) and \(I_n \) is the \(n \)-by-\(n \) identity matrix. It follows that \(n = \text{rank}(I_n) \leq \text{rank}(B) \leq m \).

REFERENCE