Semigroups with positive definite structure
HTML articles powered by AMS MathViewer
- by Parfeny P. Saworotnow
- Proc. Amer. Math. Soc. 40 (1973), 421-425
- DOI: https://doi.org/10.1090/S0002-9939-1973-0320640-1
- PDF | Request permission
Abstract:
Let $G$ be a semigroup with the identity 1 and an involution $x \to {x^ \ast }$. One can define a complex-valued and an ${H^ \ast }$-algebra valued positive definite function on $G$ in the obvious way. Assume that for each $x \in G$ there exists a positive number ${L_x}$ such that $q({x^ \ast }x) \leqq {L_x}q(1)$ for each complex positive definite function on $G$. It is shown that each ${H^ \ast }$-algebra valued positive definite function on $G$ is of the form $p(x) = (f,{T_x}f)$ for some representation $T$ of $G$ on a Hilbert module $H$ and $f \in H$. Also there is an analogue of Bochner theorem for $G$.References
- Warren Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364–386. MR 13235, DOI 10.1090/S0002-9947-1945-0013235-8
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- R. J. Lindahl and P. H. Maserick, Positive-definite functions on involution semigroups, Duke Math. J. 38 (1971), 771–782. MR 291826
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- Béla Sz.-Nagy, Prolongements des transformations de l’espace de Hilbert qui sortent de cet espace. Appendice au livre “Leçons d’analyse fonctionnelle” par F. Riesz et b. Sz.-Nagy, Akadémiai Kiadó, Budapest, 1955 (French). MR 0068138 M. A. Naĭmark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, rev. ed., 1964. MR 19, 870; MR 34 #4928.
- Parfeny P. Saworotnow, A generalized Hilbert space, Duke Math. J. 35 (1968), 191–197. MR 227749
- Parfeny P. Saworotnow, Representation of a topological group on a Hilbert module, Duke Math. J. 37 (1970), 145–150. MR 262837
- Parfeny P. Saworotnow, Bochner-Raikov theorem for a generalized positive definite function, Duke Math. J. 38 (1971), 117–121. MR 275183
- Parfeny P. Saworotnow, Generalized positive linear functionals on a Banach algebra with an involution, Proc. Amer. Math. Soc. 31 (1972), 299–304. MR 287321, DOI 10.1090/S0002-9939-1972-0287321-3
- Parfeny P. Saworotnow, Integral as a certain type of a positive definite function, Proc. Amer. Math. Soc. 35 (1972), 93–95. MR 298430, DOI 10.1090/S0002-9939-1972-0298430-7
- Parfeny P. Saworotnow and John C. Friedell, Trace-class for an arbitrary $H^{\ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 95–100. MR 267402, DOI 10.1090/S0002-9939-1970-0267402-9
- Parfeny P. Saworotnow, Abstract stationary processes, Proc. Amer. Math. Soc. 40 (1973), 585–589. MR 324762, DOI 10.1090/S0002-9939-1973-0324762-0
- Yu. A. Rozanov, Stationary random processes, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1967. Translated from the Russian by A. Feinstein. MR 0214134
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 40 (1973), 421-425
- MSC: Primary 43A35; Secondary 22A25
- DOI: https://doi.org/10.1090/S0002-9939-1973-0320640-1
- MathSciNet review: 0320640