A BOUNDED HILBERTIAN BASIS IN $C[0, 1]$

SHERWOOD SAMN

Abstract. The existence of a bounded Hilbertian basis in $C[0, 1]$ is established.

1. Introduction. It is well known that an orthonormal sequence $\{x_n\}$ in a Hilbert space possesses the following properties:

(1) $\sum_{i=1}^\infty a_i x_i$ converges implies $\sum_{i=1}^\infty |a_i|^2 < \infty$, and

(2) $\sum_{i=1}^\infty |a_i|^2$ implies $\sum_{i=1}^\infty a_i x_i$ converges.

A basis $\{x_j\}$ in a Banach space satisfying (1) is called a Besselian basis and a basis $\{x_j\}$ in a Banach space satisfying (2) is called an Hilbertian basis.

A basis $\{x_n\}$ is bounded if $0 < \inf_n \|x_n\| \leq \sup_n \|x_n\| < \infty$. In [2], Pelczyński raised the question whether there exists in $C[0, 1]$ (in $L^1[0, 1]$) a bounded Besselian (resp. Hilbertian) basis, in particular, whether there exists in $C[0, 1]$ a bounded orthonormal basis. In [4], Olevskiĭ proved the non-existence of bounded orthonormal basis in $C[0, 1]$; in this paper we will show that there exists a bounded Hilbertian basis in $C[0, 1]$.

A basis $\{x_n\}$ of a Banach space is wc$_0$ (or semishrinking) if x_n converges weakly to 0. Since every Hilbertian basis is a wc$_0$ basis, it is natural to look for a bounded Hilbertian basis in the class of bounded wc$_0$ bases. The referee has pointed out to us that Warren [3] has constructed a bounded wc$_0$ basis in $C[0, 1]$. Our basis is similar to his, but is a little simpler.

2. Main result. Let $a_0=0$, $a_1=1$ and for $j=2^n$, $a_{j+k}=(2k-1)/(2j)$ $(n=0, 1, \ldots; k=1, 2, \ldots, 2^n)$. Let $b_n=1/2^{n+1}$ $(n=1, 2, \ldots)$ and let $\{c_n\}$ be the subsequence of $\{a_n\}$ complementary to the subsequence $a_0, a_1, b_1, b_2, \ldots$ of $\{a_n\}$, i.e. $c_1=1/2$, $c_2=3/4$, $c_3=1/8$, $c_4=5/8$, $c_5=7/8$, $c_6=3/16$, \ldots. Next we define a rearrangement of $\{a_n\}$ as follows: a_0, a_1, c_1; $b_1, b_2, b_3, c_2; \ldots; b_{q(n)+1}, \ldots, b_{q(n)}, c_n; \ldots$, where $q(n)=1+2^2+\cdots+n^2-n(n=2, 3, \ldots)$. (Note. To each positive integer n is associated a group of numbers consisting of n^2-1 b_j's and one c_i.) To simplify matters, let us rename the above sequence as d_0, d_1, d_2, \ldots.

We now define a sequence in $C[0, 1]$ as follows (it is slightly different

Received by the editors June 22, 1972 and, in revised form, September 13, 1972 and January 17, 1973.

from the usual way of defining a generalized Schauder basis [1, p. 11]):

\[x_0(t) = 1, \]
\[x_1(t) = 1 - t, \]
\[x_2(t) = 1, \quad t = d_2, \]
\[= 0, \quad t \in \{d_0, d_1,d_3,...,d_{n-1}, g_n\}, \]
\[= \text{linear for other } t, \]

and for \(n \geq 3 \)

\[x_n(t) = 1, \quad t = d_n, \]
\[= 0, \quad t \in \{d_0, d_1,d_3,...,d_{n-1}, g_n\}, \]
\[= \text{linear for other } t, \]

where \(g_n \) denotes the first \(b_i \) in the sequence \(\{b_i\} \) not in \(\{d_0, d_1,d_3,...,d_n\} \).

Finally, we define another sequence in \(C[0, 1] \) as follows: \(y_i = x_i \quad (i = 0, 1, 2) \), and for \(n \geq 2 \) and \(p(n) = 1 + 2^2 + \cdots + (n-1)^2 + 1 \)

\[y_{p(n)+1} = -x_{p(n)+1} - x_{p(n)+2} - \cdots - x_{p(n)+1} + n^{-2} x_{p(n)+1}, \]
\[y_{p(n)+k} = x_{p(n)+k-1} + n^{-2} x_{p(n)+1} \quad (k = 2, \cdots, n^2). \]

We note in particular that for \(n \geq 3, 1 \leq k \leq n^2 \), the support of \(y_{p(n)+k} \) is contained in the union of two closed disjoint intervals \(I_{n,1} \) and \(I_{n,2} \), where \(I_{n,1} = [b_q(n)+1, b_q(n-1)] \) and \(I_{n,2} = [b_q(n-1)-1, 1] \). (Note: \(b_q(n-1)-1 \leq b_{n-1} < c_n < 1 \).)

Theorem. The sequence \(\{y_n\} \) is a bounded Hilbertian basis of \(C[0, 1] \).

Proof. The direct method used in showing the generalized Schauder basis of \(C[0, 1] \) is a basis [1, p. 11] can be used with slight modification to show \(\{x_n\} \) is a basis. Since \(x_i = y_i \quad (i = 0, 1, 2) \), \(x_{p(n)+1} = y_{p(n)+1} + \cdots + y_{p(n)+1} \), and \(x_{p(n)+k} = y_{p(n)+k+1} + n^{-2} y_{p(n)+1} \quad (k = 1, \cdots, n^2-1) \), \([x_i] = [y_i] \quad (i = 0, 1, 2) \) and \([x_{p(n)+1}, \cdots, x_{p(n)+1}] = [y_{p(n)+1}, \cdots, y_{p(n)+1}] \). Hence it suffices [1, p. 64] to show that there is a constant \(C \) independent of \(n \) such that for any sequence of real numbers \(h_1, h_2, \cdots, \)

\[
\left\| \sum_{i=1}^{k} h_i y_{p(n)+i} \right\| \leq C \left\| \sum_{i=1}^{k+1} h_i y_{p(n)+i} \right\| (n = 1, 2, \cdots; k = 1, 2, \cdots, n^2).
\]

The following argument is similar to an argument used in [3]; we present it here for completeness. Let \(g(k) = 0 \) if \(k = n^2 \) and \(= 1 \) if \(1 \leq k < n^2 \), then

\[
\left\| \sum_{i=1}^{k} h_i y_{p(n)+i} \right\| = \text{Max}\{\mid h_1 + \cdots + h_k \mid n^2, \mid h_1 - h_2 \mid, \cdots, \mid h_1 - h_k \mid, g(k) \mid h_1 \mid\} \leq 2 \text{Max}\{\mid h_i \mid \mid 1 \leq i \leq n^2 \}.
\]
Now let $e_1 = (h_1 + \cdots + h_N)/N$, and $e_k = h_k - h_1$, $k = 2, \cdots, n^2 = N$; then
$h_1 = e_1 - (e_1 + e_2 + \cdots + e_n)/N$, $h_k = e_k + h_1$ ($k = 2, \cdots, n^2 = N$), and
\[
\max\{|h_i| : 1 \leq i \leq n^2\} \leq 3 \max\{|e_i| : 1 \leq i \leq n^2\}.
\]
Hence for $N = n^2$
\[
\left\| \sum_{i=1}^{N} h_i y_p(n) + i \right\| = \max\{|h_1 + \cdots + h_N|/N, |h_1 - h_2|, \cdots, |h_1 - h_N|\}
\]
\[
= \max\{|e_1| : 1 \leq i \leq N\}
\]
\[
\geq \frac{1}{2} \max\{|h_i| : 1 \leq i \leq N\}
\]
\[
= \frac{1}{6} \left\| \sum_{i=1}^{k} h_i y_p(n) + i \right\|.
\]
Hence C can be chosen to be 6.

To show that $\{y_n\}$ is a bounded Hilbertian basis, we may disregard a finite number of y_n's. Therefore, for sake of symmetry, we will consider only $y_{p(n)+k}$ for $n \geq 3$, $1 \leq k \leq n^2$. Let $I_{n,1}$ and $I_{n,2}$ be the two disjoint closed intervals mentioned above. It is clear that
\[
\sup\{|y_{p(n)+k}(t)| : t \in I_{n,1}\} = 1,
\]
and
\[
\sup\{|y_{p(n)+k}(t)| : t \in I_{n,2}\} = n^{-2} \quad (n \geq 3, 1 \leq k \leq n^2).
\]
For $n \geq 3$, $1 \leq k \leq n^2$, let
\[
u_p(n)+k(t) = y_{p(n)+k}(t), \quad t \in I_{n,1},
\]
\[= 0 \quad \text{otherwise},
\]
\[
u_p(n)+k(t) = y_{p(n)+k}(t), \quad t \in I_{n,2},
\]
\[= 0 \quad \text{otherwise}.
\]
One can readily verify that $u_{p(n)+1} = -(x_{p(n)+1} + \cdots + x_{p(n+1)-1})$, $u_{p(n)+k} = x_{p(n)+k-1}$ ($k = 2, \cdots, n^2$), and $v_{p(n)+k} = n^{-2} x_{p(n)+1}$ ($k = 1, 2, \cdots, n^2$). Thus $u_{p(n)+k}$, $v_{p(n)+k}$ are in $C[0,1]$, $u_{p(n)+k} + v_{p(n)+k} = y_{p(n)+k}$, $\|u_{p(n)+k}\| = 1$, $\|v_{p(n)+k}\| = n^{-2}$, $u_{p(n)+1} \leq 0$ and $u_{p(n)+k} \geq 0$ ($2 \leq k \leq n^2$). And because of the way the x_i's are defined, we also have
\[
\left\| \sum_{n=3}^{N} u_{p(n)+1} \right\| = \left\| \sum_{n=3}^{N} \sum_{j=1}^{n^2-1} x_{p(n)+j} \right\| = 1.
(N \geq 3), and similarly,

\left\| \sum_{n=3}^{N-1} \sum_{k=2}^{2^k} u_{p(n)+k} + \sum_{k=2}^{2^k} u_{p(N)+k} \right\| = 1

(N \geq 3, 2 \leq K \leq N^2).

Let f \in C[0, 1]^*. Then \(f(y_n) = f(u_n) + f(v_n) \) (n \geq 7), and

\begin{align*}
\sum_{n=7}^{\infty} |f(y_n)|^2 & \leq 2 \left\{ \sum_{n=7}^{\infty} |f(u_n)|^2 + \sum_{n=7}^{\infty} |f(v_n)|^2 \right\}.
\end{align*}

Hence it is sufficient to prove the two series on the right converge. Now \(|f(v_n)| \leq \|f\| \|v_n\| = \|f\|/k^2 \) for some \(k \geq 3 \). But because of the way the \(y_n \)'s are constructed, there are exactly \(k^2 \) \(v_n \)'s with \(\|v_n\| = k^{-2} \). Hence

\begin{align*}
\sum_{n=7}^{\infty} |f(v_n)|^2 & \leq \|f\|^2 \sum_{k=3}^{\infty} k^2 \left(\frac{1}{k^2} \right)^2 < \infty.
\end{align*}

To show the other series converges, we note that there exists some function \(h \) of bounded variation on \([0, 1]\) such that \(f(u_n) = \int_0^1 u_n \, dh \). Let \(h_1 \) and \(h_2 \) be the positive and negative variations of \(h \) respectively. For any integer \(M = p(N) + K \geq 7 \) (\(N \geq 3, 1 \leq K \leq N^2 \)),

\begin{align*}
\sum_{n=7}^{M} |f(u_n)| & = \sum_{n=3}^{N-1} \sum_{k=1}^{n^2} |f(u_{p(n)+k})| + \sum_{k=1}^{K} |f(u_{p(N)+k})| \\
& = \sum_{n=3}^{N} |f(u_{p(n)+1})| + \sum_{n=3}^{N-1} \sum_{k=2}^{n^2} |f(u_{p(n)+k})| + \sum_{k=2}^{K} |f(u_{p(N)+k})| \\
& \leq 2 \sum_{i=1}^{2} \sum_{n=3}^{N} \left| \int_0^1 u_{p(n)+1} \, dh_i \right| \\
& \quad + 2 \sum_{i=1}^{2} \sum_{n=3}^{N} \sum_{k=2}^{n^2} \left| \int_0^1 u_{p(n)+k} \, dh_i \right| + \sum_{k=2}^{K} \left| \int_0^1 u_{p(N)+k} \, dh_i \right| \\
& = 2 \int_0^1 \left(\sum_{n=3}^{N} u_{p(n)+1} \right) \, dh_i \\
& \quad + 2 \sum_{i=1}^{2} \int_0^1 \left(\sum_{n=3}^{N} \sum_{k=2}^{n^2} u_{p(n)+k} + \sum_{k=2}^{K} u_{p(N)+k} \right) \, dh_i \\
& \leq 2(V(h_1) + V(h_2))
\end{align*}

where \(V(h_i) \) (i=1, 2) are the total variations of the monotone increasing functions \(h_i \). This obviously implies the convergence of the series.

Finally, the boundedness is clear. This completes the proof.
REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, INDIANA AND PURDUE UNIVERSITIES AT INDIANAPOLIS, INDIANAPOLIS, INDIANA 46205