AN INVARIANT OF CONFORMAL MAPPINGS

BANG-YEN CHEN

Abstract. A result of W. Blaschke on conformal invariants of a surface is generalized.

1. Introduction. A conformal mapping on euclidean \(m \)-space \(E^m \) can be decomposed into a product of similarity transformations and inversions \(\{ \pi_j \} \) (Haantjes [2]). Let \(M \) be a surface in \(E^m \). If the center of inversion \(\pi_i \) of the conformal mapping does not lie on the surface \(M \) for all \(\pi_i \), then the conformal mapping is called a conformal mapping of \(E^m \) with respect to \(M \). A quantity on \(M \) is called a conformal invariant if it is invariant under conformal mappings of \(E^m \) with respect to \(M \).

The main purpose of this note is to prove the following

Theorem. Let \(M \) be a surface in \(E^m \) with Gauss curvature \(K \), mean curvature \(H \) and volume element \(dV \). Then \((H^2 - K) dV \) is a conformal invariant.

If the codimension is one, this theorem was given by Blaschke [1].

2. Proof of the Theorem. It is obvious that the quantity \((H^2 - K) dV \) is invariant under similarity transformations (motions and homothetics on \(E^m \)). Hence, it suffices to prove the Theorem for inversions. Let \(\pi \) be an inversion on \(E^m \) such that the center of \(\pi \) does not lie on the surface \(M \). We choose the origin at the center of the inversion \(\pi \). Let \(x \) and \(\bar{x} \) be the position vectors of the origin surface \(M \) and the inverse surface \(\bar{M} \) respectively, and let \(c \) be the radius of inversion \(\pi \). Then we have

\[
\bar{x} = \left(\frac{c^2}{r^2} \right) x, \quad r^2 = x \cdot x.
\]

From this we find that

\[
d\bar{x} = \left(\frac{c^2}{r^2} \right) dx - \left(2c^2/r^3 \right) (dr)x,
\]

\[
d\bar{x} \cdot d\bar{x} = \left(\frac{c^4}{r^4} \right) dx \cdot dx.
\]
Hence the volume element $d\bar{V}$ of \bar{M} is given by
\begin{equation}
46 \quad d\bar{V} = \left(\frac{c^4}{r^4}\right) dV.
\end{equation}

Let e_3, \ldots, e_{m-2} be any $m-2$ mutually orthogonal unit normal local vector fields on M. Then
\begin{equation}
56 \quad \bar{e}_\alpha = \frac{2(x \cdot e_\alpha)}{r^2}x - e_\alpha, \quad \alpha = 3, \ldots, m-2,
\end{equation}
are $m-2$ mutually orthogonal unit normal vector fields on \bar{M}. From (2) and (5), we obtain
\begin{equation}
62 \quad dx \cdot d\bar{e}_\alpha = \left(\frac{2c^2(x \cdot e_\alpha)}{r^2}\right) dx \cdot dx - \left(\frac{c^2}{r^2}\right) dx \cdot dx.
\end{equation}

Combining (3) and (6), we find that, for any unit vector e of M in E^m, the principal curvatures $k_i(e)$, $i = 1, 2$, of M with respect to e satisfy the following
\begin{equation}
70 \quad \bar{k}_i(e) = -(r^4/c^4)k_i(e) - \left(\frac{2r^2}{c^2}\right)(x \cdot e), \quad i = 1, 2,
\end{equation}
where $\bar{k}_i(e)$ are the corresponding principal curvatures on \bar{M} and $\bar{e} = \frac{2(x \cdot e)}{r^2}x - e$. Hence we obtain
\begin{equation}
80 \quad \left(\bar{k}_1(e) + \bar{k}_2(e)\right)^2 - 4\bar{k}_1(e)\bar{k}_2(e) = (r^4/c^4)((k_1(e) + k_2(e))^2 - 4k_1(e)k_2(e)).
\end{equation}

By taking averages of both sides of (8) over the spheres of unit normal vectors of \bar{M} and \bar{M} at the corresponding points, we obtain
\begin{equation}
90 \quad \bar{H}^2 - R = \left(\frac{r^4}{c^4}\right)(\bar{H}^2 - K),
\end{equation}
where \bar{H} and R are the mean curvature and the Gauss curvature of \bar{M}. Hence, from (4) and (9), we obtain the Theorem.

Remark 1. If M is an orientable closed surface in E^m, then, by combining the Theorem and the well-known Gauss-Bonnet formula, we see that the integral $\int_M H^2 dV$ is a global conformal invariant. If the codimension is one, this invariant was observed by White [3].

References

Department of Mathematics, Michigan State University, East Lansing, Michigan 48823