Bounded holomorphic functions in Siegel domains
HTML articles powered by AMS MathViewer
- by Su Shing Chen
- Proc. Amer. Math. Soc. 40 (1973), 539-542
- DOI: https://doi.org/10.1090/S0002-9939-1973-0322211-X
- PDF | Request permission
Abstract:
A Siegel domain $D$ of the second kind (not necessarily affine homogeneous) is shown to be complete with respect to the Carathéodory distance. Thus $D$ is convex with respect to the bounded holomorphic functions, hence is a domain of holomorphy. A Phragmén-Lindelöf theorem for $D$ is also given. That is, if a holomorphic function $f$ in $D$ is continuous in $\bar D$, bounded on the distinguished boundary $S$ of $D$ and not of exponential growth, then $f$ is bounded in $\bar D$.References
- Salomon Bochner and William Ted Martin, Several Complex Variables, Princeton Mathematical Series, vol. 10, Princeton University Press, Princeton, N. J., 1948. MR 0027863
- Soji Kaneyuki, Homogeneous bounded domains and Siegel domains, Lecture Notes in Mathematics, Vol. 241, Springer-Verlag, Berlin-New York, 1971. MR 0338467
- Dong S. Kim, Boundedly holomorphic convex domains, Pacific J. Math. 46 (1973), 441–449. MR 344520
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Adam Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332–350. MR 200478, DOI 10.2307/1970645 I. I. Pjateckiǐ-Šapiro, Géométrie des domaines classiques et théorie des fonctions automorphes, Dunod, Paris, 1966. MR 33 #5949.
- E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, No. 11, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0473215
- E. C. Titchmarsh, Han-shu lun, Science Press, Peking, 1964 (Chinese). Translated from the English by Wu Chin. MR 0197687
- Vasiliĭ Sergeevič Vladimirov, Methods of the theory of functions of many complex variables, The M.I.T. Press, Cambridge, Mass.-London, 1966. Translated from the Russian by Scripta Technica, Inc; Translation edited by Leon Ehrenpreis. MR 0201669
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 40 (1973), 539-542
- MSC: Primary 32H15
- DOI: https://doi.org/10.1090/S0002-9939-1973-0322211-X
- MathSciNet review: 0322211