ON AKCOGLU AND SUCHESTON'S OPERATOR CONVERGENCE THEOREM IN LEBESGUE SPACE

RYOTARO SATO

Abstract. Let T be a bounded linear operator on an L_1-space and τ its linear modulus. It is proved that if the adjoint of τ has a strictly positive subinvariant function then the following two conditions are equivalent: (i) T^n converges weakly; (ii) $(1/n) \sum_{k=1}^{n} T^k$ converges strongly for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers.

1. Introduction. Let (X, \mathcal{M}, m) be a σ-finite measure space and $L_p(X) = L_p(X, \mathcal{M}, \mu)$, $1 \leq p \leq \infty$, the usual (complex) Banach spaces. If $A \in \mathcal{M}$ then 1_A is the indicator function of A and $L_p(A)$ denotes the Banach space of all $L_p(A)$-functions that vanish a.e. on $X - A$. Let T be a bounded linear operator on $L_1(X)$ and τ its linear modulus [2]. Thus τ is a positive linear operator on $L_1(X)$ such that

$$\|\tau\|_1 = \|T\|_1 \quad \text{and} \quad \tau g = \sup\{|Tf|; f \in L_1(X) \text{ and } |f| \leq g\}$$

for any $0 \leq g \in L_1(X)$. The adjoint of T is denoted by T^*. Clearly T is a contraction if and only if $\tau^* 1 \leq 1$. In [1] Akcoglu and Sucheston proved that if T is a contraction then the following two conditions are equivalent: (i) T^n converges weakly; (ii) $(1/n) \sum_{k=1}^{n} T^k$ converges strongly for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers. In this note we shall prove that if τ^* has a strictly positive subinvariant function in $L_\infty(X)$ then the equivalence of (i) and (ii) still holds. Applying this result, we obtain that if T is a positive linear operator on $L_1(X)$ such that $\sup_n \|(1/n) \sum_{k=0}^{n-1} T^k\|_1 < \infty$ and also such that $T^n f$ converges weakly for any $f \in L_1(X)$ with $\int f \, dm = 0$ and if T^* has a strictly positive subinvariant function in $L_\infty(X)$, then for any $f \in L_1(X)$ with $\int f \, dm = 0$ and any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers, $(1/n) \sum_{k=1}^{n} T^k f$ converges strongly. This is a generalization of another result of Akcoglu and Sucheston [1].

Received by the editors January 17, 1973.

Key words and phrases. Bounded linear operator, linear modulus of a bounded linear operator, weak and strong convergence.
2. Results. Throughout this section we shall assume that there exists a strictly positive function \(s \in L_\infty(X) \) with \(\tau^*s \leq s \). In the proofs we shall also assume that \((X, \mathcal{M}, m) \) is a finite measure space, since the \(L_1 \) of a \(\sigma \)-finite measure space is isometric to the \(L_1 \) of a finite measure space (cf. [1]).

Theorem 1. The following two conditions are equivalent:

(i) If \(f \in L_1(X) \) then \(T^nf \) converges weakly;

(ii) If \(f \in L_1(X) \) then \(\frac{1}{n} \sum_{k=1}^{n} T^k f \) converges strongly for any strictly increasing sequence \(k_1, k_2, \cdots \) of nonnegative integers.

Proof. We first prove that (i) implies (ii). For \(sf \in L_1(X) \), where \(f \in L_1(X) \), define \(V(sf) = sf \). Since \(\{ sf; f \in L_1(X) \} \) is a dense subspace of \(L_1(X) \) in the norm topology and \(||V(sf)||_1 \leq ||sf||_1 \) (cf. [3]), \(V \) may be considered to be a linear contraction on \(L_1(X) \). Since \(V^n(sf) = T^n f \) for any \(n \geq 0 \) and \(T^nf \) converges weakly, it follows that \(V^n(sf) \) converges weakly. Thus, since \(V \) is a contraction, it is easily seen that for any \(A \in \mathcal{M} \) the limit \(\mu(A) = \lim_n \int_A V^n f \, dm \) exists. Since the measure \(m \) is finite, the Vitali-Hahn-Saks theorem implies that \(\mu \) is a countably additive measure on \(\mathcal{M} \) absolutely continuous with respect to \(m \). Therefore there exists a function \(g \in L_1(X) \) such that \(\mu(A) = \int_A g \, dm \) for any \(A \in \mathcal{M} \). It follows that \(V^n f \) converges weakly to \(g \). Thus, by Theorem 2.1 of [1], for any \(f \in L_1(X) \) and any strictly increasing sequence \(k_1, k_2, \cdots \) of nonnegative integers,

\[
\frac{1}{n} \sum_{i=1}^{n} V^{k_i}(sf) = \frac{1}{n} \left(\sum_{i=1}^{n} T^{k_i} f \right)
\]

converges strongly. Let \(\lim_n \frac{1}{n} \sum_{i=1}^{n} T^{k_i} f - f_0 = 0 \) for some \(f_0 \in L_1(X) \) and let \(\varepsilon > 0 \) be arbitrarily fixed. Since \(T^nf \) converges weakly, there exists a positive number \(\delta \) such that \(A \in \mathcal{M} \) and \(m(A) < \delta \) imply \(\int_A |T^n f| \, dm < \varepsilon \) for any \(n \geq 0 \). Choose \(\eta > 0 \) such that \(m(\{ x; s(x) < \eta \}) < \delta \) and \(\int_{\{x; s(x) < \eta\}} |f_0| \, dm < \varepsilon \), and put \(A = \{ x; s(x) < \eta \} \). Then

\[
\left\| \frac{1}{n} \sum_{i=1}^{n} T^{k_i} f - \frac{1}{m} \sum_{j=1}^{m} T^{k_j} f \right\|_1 \leq \left\| \frac{1}{n} \sum_{i=1}^{n} 1_A T^{k_i} f \right\|_1 + \left\| \frac{1}{m} \sum_{j=1}^{m} 1_A T^{k_j} f \right\|_1 + \left\| \frac{1}{n} \sum_{i=1}^{n} 1_{X-A} T^{k_i} f - \frac{1}{m} \sum_{j=1}^{m} 1_{X-A} T^{k_j} f \right\|_1 \leq 2 \varepsilon
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
and
\[\left\| \frac{1}{n} \sum_{i=1}^{n} 1_{X-A} T^{k_i}f - 1_{X-A} \frac{1}{s} f_0 \right\|_1 \leq \frac{1}{\eta} \left\| \frac{1}{s} \left(\sum_{i=1}^{n} 1_{X-A} T^{k_i}f \right) - 1_{X-A} f_0 \right\|_1 \to 0 \]
as \(n \to \infty \), from which we observe that \(\frac{1}{n} \sum_{i=1}^{n} T^{k_i}f \) is a Cauchy sequence in \(L_1(X) \), and hence \(\frac{1}{n} \sum_{i=1}^{n} T^{k_i}f \) converges strongly.

Conversely if (ii) holds, then it follows easily that \(\sup_n \| T^n \|_1 < \infty \) and that for any \(f \in L_1(X) \) and any \(A \in \mathcal{A} \), \(\lim_n \int_A T^n f \, dm \) exists, and hence \(T^n f \) converges weakly. This completes the proof of Theorem 1.

Theorem 2. Let \(T \) be a positive linear operator on \(L_1(X) \) with
\[\sup_n \left\| \frac{1}{n} \sum_{k=0}^{n-1} T^k \right\|_1 < \infty \]
and suppose \(T^* s \leq s \) for some \(0 < s \in L_\infty(X) \). Then the following two conditions are equivalent:

(i) If \(f \in L_1(X) \) and \(\int f \, dm = 0 \), then \(T^n f \) converges weakly;

(ii) If \(f \in L_1(X) \) and \(\int f \, dm = 0 \), then for any strictly increasing sequence \(k_1, k_2, \ldots \) of nonnegative integers, \(\frac{1}{n} \sum_{i=1}^{n} T^{k_i}f \) converges strongly.

Proof. Suppose (i) holds. It is known [3] that if \(T \) has no nontrivial nonnegative invariant function in \(L_1(X) \), then the operator \(V \) introduced above also has no nontrivial nonnegative function in \(L_1(X) \). Thus it follows from [1] that, if \(T^n f \) converges weakly then
\[\lim_n \| V^n(sf) \|_1 = \lim_n \| s T^n f \|_1 = 0. \]

Let \(\epsilon > 0 \) be arbitrarily fixed, and let \(\delta \) be a positive number such that \(A \in \mathcal{A} \) and \(m(A) < \delta \) imply \(\int_A |T^n f| \, dm < \epsilon \) for any \(n \geq 0 \). Choose \(\eta > 0 \) such that \(m(\{ x ; s(x) < \eta \}) < \delta \), and put \(A = \{ x ; s(x) < \eta \} \). Then
\[\| T^n f \|_1 \leq \| 1_A T^n f \|_1 + \eta^{-1} \| 1_{X-A} s T^n f \|_1 \]
\[< \epsilon + \eta^{-1} \| s T^n f \|_1 \]
and \(\| s T^n f \| \to 0 \) as \(n \to \infty \), thus \(\lim_n \| T^n f \|_1 = 0. \)

If there exists \(0 \leq h \in L_1(X) \) with \(\| h \|_1 > 0 \) and \(Th = h \), then it follows from [1] that for any \(f \in L_1 \), \(T^n f \) converges weakly. Thus the strong convergence of \(\frac{1}{n} \sum_{i=1}^{n} T^{k_i}f \) for any strictly increasing sequence \(k_1, k_2, \ldots \) of nonnegative integers follows from Theorem 1.

Clearly (ii) implies (i), and the proof is complete.
BIBLIOGRAPHY

Department of Mathematics, Josai University, Sakado, Saitama 350-02, Japan