A generalization of Tietze’s theorem on convex sets in $R^{3}$
HTML articles powered by AMS MathViewer
- by Nick M. Stavrakas
- Proc. Amer. Math. Soc. 40 (1973), 565-567
- DOI: https://doi.org/10.1090/S0002-9939-1973-0341280-4
- PDF | Request permission
Abstract:
Let $S \subset {R^3}$ and let $C(S)$ denote the points of local convexity of $S$. One interesting result which is proven is Theorem. Let $S \subset {R^3}$ be such that $S \subset \operatorname {cl} (C(S)),S$ not planar and $C(S)$ is connected. Then $S \subset \operatorname {cl} (\operatorname {int} S)$.References
- Merle D. Guay and David C. Kay, On sets having finitely many points of local nonconvexity and property $P_{m}$, Israel J. Math. 10 (1971), 196–209. MR 303247, DOI 10.1007/BF02771570
- David C. Kay and Merle D. Guay, Convexity and a certain property $P\,_{m}.$, Israel J. Math. 8 (1970), 39–52. MR 268639, DOI 10.1007/BF02771549
- Nick M. Stavrakas, W. R. Hare, and J. W. Kenelly, Two cells with $n$ points of local nonconvexivity, Proc. Amer. Math. Soc. 27 (1971), 331–336. MR 270273, DOI 10.1090/S0002-9939-1971-0270273-9
- Nick M. Stavrakas and R. E. Jamison, Valentine’s extensions of Tietze’s theorem on convex sets, Proc. Amer. Math. Soc. 36 (1972), 229–230. MR 310763, DOI 10.1090/S0002-9939-1972-0310763-4
- Nick M. Stavrakas, The dimension of the convex kernel and points of local nonconvexity, Proc. Amer. Math. Soc. 34 (1972), 222–224. MR 298549, DOI 10.1090/S0002-9939-1972-0298549-0
- Nick M. Stavrakas, On the polygonal connectivity of polyhedra and the closures of open connected sets, Bull. Amer. Math. Soc. 79 (1973), 403–406. MR 372754, DOI 10.1090/S0002-9904-1973-13186-6
- Nick M. Stavrakas, $L_{n}$ sets and the closures of open connected sets, Canadian J. Math. 27 (1975), 1–5. MR 362051, DOI 10.4153/CJM-1975-001-3
- F. A. Valentine, Local convexity and $L_{n}$ sets, Proc. Amer. Math. Soc. 16 (1965), 1305–1310. MR 185510, DOI 10.1090/S0002-9939-1965-0185510-6
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 40 (1973), 565-567
- MSC: Primary 52A15
- DOI: https://doi.org/10.1090/S0002-9939-1973-0341280-4
- MathSciNet review: 0341280