Analytic functions, ideals, and derivation ranges
HTML articles powered by AMS MathViewer
- by R. E. Weber
- Proc. Amer. Math. Soc. 40 (1973), 492-496
- DOI: https://doi.org/10.1090/S0002-9939-1973-0353025-2
- PDF | Request permission
Abstract:
When $A$ is in the Banach algebra $\mathcal {B}(\mathcal {H})$ of all bounded linear operators on a Hilbert space $\mathcal {H}$, the derivation generated by $A$ is the bounded operator ${\Delta _A}$ on $\mathcal {B}(\mathcal {H})$ defined by ${\Delta _A}(X) = AX - XA$. It is shown that (i) if $B$ is an analytic function of $A$, then the range of ${\Delta _B}$ is contained in the range of ${\Delta _A}$; (ii) if $U$ is a nonunitary isometry, then the range of ${\Delta _U}$, contains nonzero left ideals; (iii) if $U$ and $V$ are isometries with orthogonally complemented ranges, then the span of the ranges of the corresponding derivations is all of $\mathcal {B}(\mathcal {H})$.References
- J. H. Anderson, Derivations, commutators, and the essential numerical range, Thesis, Indiana University, Bloomington, Ind., 1971.
N. Dunford and J. T. Schwartz, Linear operators. I, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- Paul R. Halmos, Commutators of operators. II, Amer. J. Math. 76 (1954), 191–198. MR 59484, DOI 10.2307/2372409
- Gunter Lumer and Marvin Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32–41. MR 104167, DOI 10.1090/S0002-9939-1959-0104167-0
- Carl Pearcy, On commutators of operators on Hilbert space, Proc. Amer. Math. Soc. 16 (1965), 53–59. MR 170213, DOI 10.1090/S0002-9939-1965-0170213-4
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101 J. G. Stampfli, On the range of a derivation (to appear). R. E. Weber, Derivation ranges, Thesis, Indiana University, Bloomington, Ind., 1972.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 40 (1973), 492-496
- MSC: Primary 47A60
- DOI: https://doi.org/10.1090/S0002-9939-1973-0353025-2
- MathSciNet review: 0353025