Projectivity of the Whitehead square
HTML articles powered by AMS MathViewer
- by Duane Randall
- Proc. Amer. Math. Soc. 40 (1973), 609-611
- DOI: https://doi.org/10.1090/S0002-9939-1973-0356047-0
- PDF | Request permission
Abstract:
We show that the Whitehead square of the generator of ${\pi _n}({S^n})$ is not a projective homotopy class for any integer $n$ with neither $n$ or $n + 1$ being a power of 2.References
- José Adem, The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 720–726. MR 50278, DOI 10.1073/pnas.38.8.720
- I. M. James, On the homotopy type of Siefel manifolds, Proc. Amer. Math. Soc. 29 (1971), 151–158. MR 275427, DOI 10.1090/S0002-9939-1971-0275427-3
- I. M. James, Note on Stiefel manifolds. I, Bull. London Math. Soc. 2 (1970), 199–203. MR 264695, DOI 10.1112/blms/2.2.199
- I. M. James, On the decomposability of fibre spaces, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970) Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 125–134. MR 0278308
- Elmer Rees, Symmetric maps, J. London Math. Soc. (2) 3 (1971), 267–272. MR 281204, DOI 10.1112/jlms/s2-3.2.267
- Emery Thomas, On functional cup-products and the transgression operator, Arch. Math. (Basel) 12 (1961), 435–444. MR 149485, DOI 10.1007/BF01650589
- Peter Zvengrowski, Skew linear vector fields on spheres, J. London Math. Soc. (2) 3 (1971), 625–632. MR 300283, DOI 10.1112/jlms/s2-3.4.625
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 40 (1973), 609-611
- MSC: Primary 55E15
- DOI: https://doi.org/10.1090/S0002-9939-1973-0356047-0
- MathSciNet review: 0356047