MORE ON TIGHT ISOMETRIC IMMERSIONS OF CODIMENSION TWO

CHANG-SHING CHEN

Abstract. We continue our investigation on tight isometric immersion of a nonnegatively curved compact manifold \(M^n \) into \(\mathbb{R}^{n+2} \). Under some minor restrictions, we prove that the immersion is a product embedding of convex hypersurfaces. For surfaces in \(\mathbb{R}^4 \), the restrictions are unnecessary.

1. Introduction. In [1], we investigated tight isometric immersions of a nonnegatively curved compact manifold \(M^n \) into \(\mathbb{R}^{n+2} \). We proved that the Morse number \(\mu(M) \) of \(M \) cannot exceed four, and we tried to characterize all such immersions with \(\mu(M)=4 \). The result of Theorem C is that under certain conditions \(M \) is topologically a product of spheres. The purpose here is to prove that the product is in fact a Riemannian product.

The main reason that we could not conclude that \(M \) is a Riemannian product in [1] is that we did not check the angle between our complementary foliations on \(M \). In this paper we will first express some results in [1] in terms of forms and then prove the result by using the structure equations. B. Hempstead [4] has proved a similar result for \(n=2 \) under a stronger hypothesis. For \(n=2 \), we will prove that only tightness and flatness are needed to prove the main result.

2. Invariant method and Cartan method in differential geometry. Let \(f: M^n \rightarrow \mathbb{R}^{n+k} \) be an isometric immersion of an \(n \)-dimensional Riemannian manifold into \((n+k) \)-dimensional Euclidean space. The connections \(\nabla \) of \(M^n \) and \(\nabla \) of \(\mathbb{R}^{n+k} \) are related as follows: For any two vector fields \(x \), \(y \) tangent to \(M \), \(\nabla_x y \) equals the component of \(\nabla_x y \) normal to the tangent space \(TM \) of \(M \). The difference \(T_{xy} = \nabla_{xy} - \nabla_{x} y \) is called the shape operator of \(M^n \) in \(\mathbb{R}^{n+k} \), and the second fundamental form with respect to a normal vector \(z \) on \(M \) is a linear transformation defined by \(\langle S_z(x), y \rangle = -\langle T_{xy}, z \rangle \), where \(x, y \) are tangents to \(M \) and \(\langle , \rangle \) is the scalar product in \(\mathbb{R}^{n+k} \).
On the other hand, consider the bundle of orthonormal frames \(me, e_1, \cdots, e_{n+k} \) where \(m \in M \), \(e_1, \cdots, e_n \) are tangent vectors to \(M \) at \(m \), and \(e_{n+1}, \cdots, e_{n+k} \) are normal to \(M \) at \(m \). Define the usual differential forms \(\omega_A = dm \cdot e_A \) and \(\omega_{AB} = de_A \cdot e_B \). We agree in this section on the following ranges of indices:

\[1 \leq a, b, c \leq n, \quad n + 1 \leq r, s, t \leq n + k, \quad 1 \leq A, B, C \leq n + k. \]

Restricting all forms to \(M \), we have \(\omega_r = 0 \), and the first structure equations \(d\omega_r = \sum \omega_a \wedge \omega_{ar} = 0 \). Since the \(\omega_a \) are linearly independent, we have

\[\omega_{ra} = \sum_b \xi_{r ab} \omega_b \]

where the \(\xi_{r ab} \) are symmetric in \(a, b \):

\[\xi_{r ab} = \xi_{r ba}. \]

The matrices \((\xi_{r ab}) \) are the matrices of the linear transformation \(S_{er} \) with respect to the base \(e_1, \cdots, e_n \). Moreover, we have

\[T_{ex} x = T_x e_a = \sum_r \omega_{ar}(x) e_r \]

for any \(x \) tangent to \(M \). Finally, we wish to recall the second structure equations:

\[d\omega_{AB} = \omega_{AB} \wedge \omega_{BC}. \]

3. Tight isometric immersion of \(M^n \) into \(R^{n+2} \). The total curvature of an immersed manifold \(f: M^n \to R^{n+2} \) is defined to be ([1], [3], [5])

\[\tau(M) = \frac{1}{C_{n+1}} \int_B |\det S_z| |w|, \]

where \(C_{n+1} \) denotes the volume of the unit \((n+1)\)-sphere, \(|w|\) denotes the volume element of the unit normal bundle \(B \) on \(M^n \) in \(R^{n+2} \), and the integration is over all \(z \in B \). It is known that \(\tau(M) \) is bounded below by the Morse number \(\mu(M) \) of \(M \), and \(f \) is called tight if \(\mu(M) = \tau(M) \). Let \(M^n \) be a compact manifold of nonnegative curvature and \(f: M^n \to R^{n+2} \) be a tight isometric immersion. In [1] we proved that \(\mu(M) \leq 4 \); for the case \(\mu(M) = 4 \) we assumed that \(T_x x \neq 0 \) for \(x \neq 0 \). Under these assumptions, we showed (Lemma 3.5 of [1]) that \(M^n \) is foliated by leaves \(U_1 \) of codimension \(q \) and simultaneously by leaves \(U_2 \) of codimension \(p \) where \(p + q = n \). Moreover, [1, Lemma 3.1, Lemma 3.5], we have proved that there is a
normal frame field f_1, f_2 such that

(5) x tangent to leaf of U_1 if and only if $T_x y$ is parallel to f_2 for all y.

(6) x tangent to leaf of U_2 if and only if $T_x y$ is parallel to f_1 for all y.

(7) $\nabla_x f_1 = 0$ for x tangent to leaf of U_1.

(8) $\nabla_x f_2 = 0$ for x tangent to leaf of U_2.

For each $m \in M^n$ pick a local frame e_1, \cdots, e_{p+q} such that e_1, \cdots, e_p are tangent to leaf L_1 of U_1. Let $e_{p+1}', \cdots, e_{p+q}'$ be a frame tangent to leaf L_2 of U_2; we infer that

$$e'_\alpha = \sum_{A=1}^n a_{\alpha A} e_A, \quad p + 1 \leq \alpha \leq p + q.$$

Throughout this section, we agree on the following index convention:

$$1 \leq i, j, k \leq p, \quad p + 1 \leq \alpha, \beta, \gamma \leq p + q, \quad 1 \leq A, B, C \leq p + q,$$

and the normals e_n+1, e_{n+2} of the last section are replaced by respectively f_1, f_2.

Let ω_A be the dual forms and $\omega_{AB}, \omega_{A n+1}, \omega_{A n+2}$ be the connection forms. By (1), let $\omega_{n+i A} = \sum B \xi_{n+i} A B \omega_B, \xi_{n+i} A B = \xi_{n+i} A, i = 1, 2$. By (5), $T_{e_i} y$ is parallel to f_2 for all y. By (3)

$$T_{e_i} y = T_y e_i = \omega_{i n+1} (y) f_1 + \omega_{i n+2} (y) f_2.$$

Hence

(9) $\omega_{i n+1} = 0$.

By (7), $\nabla_{e_i} f_1 = 0$. In terms of ω's,

(10) $\omega_{n+1, n+2} (e_i) = 0$.

Similarly, (8) will give $\omega_{n+1, n+2} (e') = 0$ or $\sum A a_{\alpha A} \omega_{n+1, n+2} (e_A) = 0$. By (10), it reduces to $\sum_B a_{\alpha B} \omega_{n+1, n+2} (e_B) = 0$. Since $(a_{\alpha B})$ is nonsingular, we must have $\omega_{n+1, n+2} (e_A) = 0$ or

(11) $\omega_{n+1, n+2} = 0$.

Using the structure equations (4) and (9), we find $0 = d \omega_{n+1, n+2} = \sum A \omega_{n+1, A} A n+2 = \sum A \omega_{n+1, A} \omega_{n+2, A}$, i.e.

$$\sum_{A, \alpha, \beta} \xi_{n+1} A B A \omega_B \wedge \xi_{n+2} A A = 0 \quad \text{or} \quad \sum_{A, \alpha, \beta} \xi_{n+1} A B \xi_{n+2} A A \omega_B \wedge \omega_A = 0.$$

Comparing the coefficients in the last equation, we find $\sum A \xi_{n+1} A B \xi_{n+2} A A = 0$ or

(12) $\sum_{i B} \xi_{n+1} A B \xi_{n+2} A A = 0$.

However, our hypothesis implies that the q vectors $\xi_a = (\xi_{n+1} A p+1, \cdots, \xi_{n+1} A p+q)$ in R^q must be linearly independent. To prove this fact, let
\[\sum_{\alpha} c_{\alpha} \xi_{\alpha} = 0 \text{ or } \sum_{\alpha} c_{\alpha} \nu_{n+1} \xi_{\beta} = 0, \text{ for any } \beta, \text{ or } \sum_{\alpha} c_{\alpha} \nu_{n+1} = 0. \text{ By (3), this implies } \sum_{\alpha} c_{\alpha} \nu_{n+1} \xi_{\alpha} = 0. \text{ By (3), this implies } \sum_{\alpha} c_{\alpha} \nu_{n+1} \xi_{\alpha} f_{\alpha} + (0)f, \text{ or }
\]

\[T_{\nu}\left(\sum_{\alpha} c_{\alpha} e_{\alpha} \right) \text{ is parallel to } f_{\alpha} \text{ for all } \nu. \]

Since \((a_{\alpha\beta})\) is nonsingular, we can find \(d_{\alpha}\) such that \(\sum_{\alpha} d_{\alpha} a_{\alpha\beta} = c_{\beta}\). Then

\[T_{\nu}\left(\sum_{\alpha} d_{\alpha} e_{\alpha} \right) = T_{\nu}\left(\text{a vector tangent to } U_{1} + \sum_{\alpha} c_{\alpha} e_{\alpha} \right) = \text{a vector parallel to } f_{2} + T_{\nu}\left(\sum_{\alpha} c_{\alpha} e_{\alpha} \right). \]

But, by (6), the left-hand side is a vector parallel to \(f_{1}\). By (13), this is only possible if \(T_{\nu}(\sum_{\alpha} d_{\alpha} e_{\alpha}) = 0\) for all \(\nu\)! Our hypothesis implies \(\sum_{\alpha} d_{\alpha} e_{\alpha} = 0\) or \(d_{\alpha} = 0\) or finally \(c_{\alpha} = 0\). Back to (12), as \(\Xi_{\alpha}\) span \(E^\nu\), (12) implies

\[(14) \quad \xi_{n+2} \nu_{\beta} = 0. \]

Now use \(\vec{v}_{\alpha} f_{\alpha} = 0\), or \(\sum_{\alpha} a_{\alpha\alpha} \vec{v}_{\alpha} f_{\alpha} = 0\) to get

\[\sum_{\alpha} a_{\alpha\alpha} \left[\sum_{H} \omega_{n+2} H (e_{\alpha}) e_{H} + \omega_{n+2} \nu_{n+1} (e_{\alpha}) f_{1} \right] = 0. \]

In particular, \(\sum_{\alpha} a_{\alpha\alpha} \omega_{n+2} H (e_{\alpha}) = 0\), or \(\sum_{\alpha} a_{\alpha\alpha} \xi_{n+2} H (\nu_{\alpha}) = 0\). By (14), this reduces to \(a_{\alpha\alpha} \xi_{n+2} H (\nu_{\alpha}) = 0\). Again the linear independence of the \(p\) vectors \((\xi_{n+2} H_{1}, \cdots, \xi_{n+2} H_{p})\) in \(R^p\) (proof is the same as before) implies \(a_{\alpha\alpha} = 0\). This completes the proof of the following:

Lemma A. At each point \(m \in M\), leaves in \(U_1\) are orthogonal to leaves in \(U_2\).

By Lemma 3.7 of [1], each leaf \(L_1\) (resp. \(L_2\)) in \(U_1\) (resp. \(U_2\)) belongs to a linear subvariety \([L_1]\) (resp. \([L_2]\)) of dimension \(p+1\) (resp. \(q+1\)), and \(L_i\) is the boundary of a convex set in \([L_i]\). Fixing a point \(m \in M\), let \([L_1]_0\), \([L_2]_0\) be the linear subvarieties passing through \(m\). Take the decomposition \(R^{n+2} = [L_1]_0 \times [L_2]_0\) and let \(p_i\) be the orthogonal projections of \(R^{n+2}\) onto \([L_i]_0\). Let \(S\) be the set of points \(n\) of \(M\) such that the leaves through \(n\) are parallel to respectively \([L_1]_0\) and \([L_2]_0\). It is obvious that \(S\) is open and closed in \(M\) and hence equal to \(M\). Define a map \(g: M \rightarrow L_1 \times L_2\) by

\[g(n) = (p_1 \circ f(n), p_2 \circ f(n)). \]

For \(n \in M\) let the leaves passing through \(n\) be \(L'_1\) and \(L'_2\). \(p_1 \circ f(n)\) \((p_2 \circ f(n))\) is the unique point of intersection of \([L'_1]\) and \([L_1]\) \(([L'_2] [L_1] [L_2])\) which is the same as the intersection of \(L'_2\) and \(L_1\) \((L'_1 \text{ and } L_2)\), because two leaves from different families already intersect in a unique point [1, Lemmas 3.8
This proves that \(g \) is well defined. Similarly, we prove that \(g \) is one-to-one and onto. Moreover, the differential of \(g \) is precisely our decomposition of the tangent space of \(M \) into two orthogonal distributions. Using the definition of the product of two Riemannian manifolds we state our main theorem:

Theorem A. Let \(f: M^n \to \mathbb{R}^{n+2} \) be a tight isometric immersion of a compact manifold \(M^n \) of nonnegative curvature. Assume \(\mu(M) = 4 \) and \(T_x x \neq 0 \) for \(x \neq 0 \). Then \(M^n \) is isometric to the product of two convex hypersurfaces \(f_1: L_1 \to \mathbb{R}^p \) and \(f_2: L_2 \to \mathbb{R}^p \). Moreover, \(f = (f_1, f_2) \).

By Corollary 2 of [2], we may state a rigidity theorem.

Corollary. Let \(M^n \) be a simply connected compact manifold of non-negative curvature. If \(M^n \) admits an immersion of the type described in the last theorem, then any isometric immersion of \(M^n \) in \(\mathbb{R}^{n+2} \) is rigid.

4. **Tight isometric flat surfaces in \(\mathbb{R}^4 \).** In the special case \(n = 2 \), a result of [1] says that a compact surface of nonnegative curvature can be tightly, isometrically immersed into \(\mathbb{R}^4 \) only if \(\mu(M) \leq 4 \) and \(\mu(M) = 4 \) only if the surface is flat. To characterize tight flat surfaces in \(\mathbb{R}^4 \), we repeatedly use the hypothesis \(T_x x \neq 0 \) for \(x \neq 0 \) (i.e. no asymptotic direction) in the last section. In this section we will prove Theorem A without the extrinsic hypothesis \(T_x x \neq 0 \) for \(x \neq 0 \).

As to the intuitive ideas behind this paper, we note that tightness implies crowdedness of total curvature [1] and that this crowdedness of total curvature leads to an intrinsic way of splitting the manifold locally. For a surface in \(\mathbb{R}^4 \) we observe that the points having asymptotic vectors make no contribution at all to the total curvature. Therefore, we still have crowdedness of total curvature on those areas without asymptotic vectors, and there we can apply the result of [1].

Let \(M^2 \) be a surface of flat metric with \(\mu(M) = 4 \) and let \(f: M^2 \to \mathbb{R}^4 \) be a tight isometric immersion. Write \(M^2 = A \cup A' \cup A'' \), where \(A \) is the set of points \(m \) such that \(T_x x \neq 0 \) for \(x \neq 0 \) at \(m \); and \(A' \) is the set of \(m \) such that \(T \neq 0 \) and there is a vector \(x \neq 0 \) with \(T_x x = 0 \); and \(A'' \) is the set of \(m \) where \(T' \equiv 0 \). By the definition of tightness \(\mu(M) = \tau(M) \), where

\[
\tau(M) = \frac{1}{2\pi^2} \int_B |\det S_x| |w| = \frac{1}{2\pi^2} \int_{B'} |\det S_x| |w|
\]

(\(B \) is the bundle of unit normals and \(B' \) is the restriction of \(B \) over \(A \), since \(\det S_x = 0 \) for \(z \) normal to \(M \) on \(A' \cup A'' \). Our previous work [1] shows that \(A \) is foliated by two families of curves \(\mathbb{U} \) and \(\mathbb{V} \), where \(\mathbb{U} \) (respectively \(\mathbb{V} \)) is the family of integral curves of the vector field \(U \).
(respectively \(V\)) defined uniquely by

\[
\begin{align*}
\text{for all }y \\
\text{for all }y
\end{align*}
\]

where \(f_1, f_2\) give the normal frame of \(A\). Most proofs in [1] can be applied to \(A\), except we cannot infer that \(\nabla_x f_1 = 0\) for \(x \in U\) (notice that we used \(U_1, U_2\) for \(U, V\) in [1]), since \(U, V\) are one-dimensional.

But the following alternative way will fill up the gap. Take two unit vectors \(e_1 \in U, e_2 \in V\). By (15), we have

\[
\begin{align*}
\nabla_{e_1} e_1 &= \alpha e_1 + \beta e_2 + \gamma f_2, \\
\nabla_{e_1} e_2 &= \alpha e_1 + \beta e_2.
\end{align*}
\]

Hence

\[
\nabla_{e_1} \nabla_{e_1} e_1 = \alpha' e_1 + \beta' e_2 + \gamma' f_2 + \alpha (\alpha e_1 + \beta e_2 + \gamma f_2) + \beta (\alpha e_1 + \beta e_2) + \gamma \nabla_{e_1} f_2,
\]

where primes denote the differentiation along \(U\) curves. Since the hyperplane \(f_1^\perp\) spanned by \(e_2, e_1, e_2\) is a supporting hyperplane of \(M\) in \(R^4\) (Lemma 3.9 of [1]) and both \(e_1, \nabla_1 e_1\) belong to \(f_1^\perp\), \(\nabla_{e_1} \nabla_{e_1} e_1\) must also in \(f_1^\perp\) [7, Corollary 3.4]. Thus

\[
\langle \nabla_{e_1} f_2, f_1 \rangle = 0 \quad \text{or} \quad \langle \nabla_{e_1} f_1, f_2 \rangle = 0.
\]

However, \(\langle \nabla_{e_1} f_1, f_1 \rangle = \frac{1}{2} e_1 \langle f_1, f_1 \rangle = 0\). So finally \(\nabla_{e_1} f_1 = 0\); that is, along each \(U\) curve, \(f_1\) is parallel. In other words, the supporting hyperplane \(f_1^\perp\) contains \(U\) curve. By Kuiper [6, Lemma 1], such a curve must be a plane convex arc. Moreover, all \(U\) curves are orthogonal to \(V\) curves (proved in the last section) and we have

Lemma 1. Each component of \(A\) is isometric to the product of two open convex 2-planar arcs.

Proof. Choose two mutually orthogonal geodesics in a component \(C_0\) of \(A\), each from one of \(U\) and \(V\), which are longest among all such curves in \(C_0\). Denote the curves respectively by \(\alpha(s), 0 < s < a_1, \) and \(\beta(s), 0 < s < b_1 (s \) denotes the arc-length) and let the 2-planes containing them be \([\alpha(0, a_1)]\) and \([\beta(0, b_1)]\) respectively. Let our euclidean space be decomposed into \([\alpha(0, a_1)] \times [\beta(0, b_1)]\). It suffices to prove that \(C_0\) is the Riemannian product \(\alpha(0, a_1) \times \beta(0, b_1)\) of the open convex arcs \(\alpha(0, a_1)\) and \(\beta(0, b_1)\). Explicitly we will show that the map \(\psi: C_0 \rightarrow \alpha(0, a_1) \times \beta(0, b_1)\) which sends \(m \in C_0\) to

\[
(\alpha(0, a_1) \cap V(m), \beta(0, b_1) \cap U(m))
\]

...
is an isometry, where $U(m)$ and $V(m)$ are the leaves through m of \mathcal{U} and \mathcal{V} respectively. It is clear that ψ is well defined and one-to-one. Also ψ preserves Riemannian structure, because the maps $p_1: U(m) \to \alpha(0, a_1)$ and $p_2: V(m) \to \beta(0, b_1)$ defined by orthogonal projection are isometries. From now on, we will omit the isometry ψ and identify m with $\psi(m)$.

To complete the proof, it remains to prove that φ is onto. Suppose not; then pick $m = (m_1, m_2) \in \mathcal{X}(0, \alpha_1) \times \mathcal{Y}(0, \beta_1)$ on the boundary of C_0. By definition of A (an open set), there is an asymptotic direction at m. However, for $x \neq 0$ tangent to $U(m)$ (defined by taking limit of $U(m')$, $m' \in C_0$), we have $T_x x \neq 0$, since $p_1: (U(m)) \to \alpha(0, a_1)$ is a local isometry. Similarly, for $x \neq 0$ tangent to $V(m)$, we have $T_x x \neq 0$, for all $x \neq 0$. This contradicts the existence of an asymptotic direction at m. Q.E.D.

In particular, the proof shows that the four edges of the rectangle belong to A', and four corners of the rectangle belong to A''. Moreover, along $(\alpha(0, a_1), \beta(b_1))$, we have $T_x x = 0$ for x tangent to $\beta(0, b_1)$, and along $(\alpha(0), \alpha(a_1))$, $\beta(0, b_1)$, $T_x x = 0$ for x tangent to $\alpha(0, a_1)$.

Lemma 2. Each component of A' adjacent to a component of A is isometric to the product of a closed line segment and an open arc which forms the border edge of the component of A.

Proof. In the terminology of [2], A' is the set of points where the index of relative nullity of the immersion is one. Let C_1' be the component of A' adjacent to C_0 of Lemma 1 and with $(\alpha(0, a_1), \beta(b_1))$ as border curve. It is well known (for example [9]) that C_1' is foliated by two families of curves, one of them consisting of line segments only. Being the limit of the tangent lines to curves of \mathcal{Y} in C_0, these lines must be parallel to each other. (This is the place where we do not use the completeness of A' which is essential in [9].) Since $(\alpha(0, a_1), \beta(b_1))$ is the curve of one of the families which does not consist of a line segment and $(\alpha(0, a_1), \beta(b_1))$ is a 2-planar curve, C_1' actually lies within a hyperplane. Therefore \mathcal{C}_1' is a portion of a product. The first factor of the product is $\alpha(0, a_1)$, and the second factor of the product is the line segment tangent to $\beta(s)$ at $(\alpha(0, a_1), \beta(b_1))$. It remains to prove that by cutting a segment along the line, the set C_1' agrees with the product set. This can be done as in the proof of Lemma 1. Q.E.D.

Notice that the opposite edge of $(\alpha(0, a_1), \beta(b_1))$ in C_1' (a rectangle) must meet another rectangle in A. Let the three consecutive rectangles be C_0, C_1', C_2. The 2-plane of the border edge between C_0 and C_1' is parallel to the one between C_1' and C_2, since they are parallel to 2-planes of leaves in C_1' (lies within a hyperplane). Moreover, if we hook up the leaves across the border edges, we get a curve across C_0, C_1', C_2 which lies
within a 2-plane orthogonal to the 2-plane of the edge \((\alpha(0, a_1), \beta(b_1))\). This process will give a band \(B\) formed by a chain of rectangles \(C_0, C_1', C_2, C_3', \cdots\) (may be infinite in number). At the same time we extend the curve \(\beta(s), 0 \leq s \leq b_1\) to get a curve \(\beta(s), 0 \leq s \leq b\) across this chain of rectangles which lies in a 2-plane orthogonal to the 2-plane of the edge \((\alpha(0, a_1), \beta(b_1))\).

Lemma 3. The band \(B\) is isometric to the product of an open convex plane arc \(\alpha(0, a_1)\) and a closed convex plane curve \(\beta(0, b)\).

Proof. It remains to show that the curves \(\beta(0, b)\) on the band are convex plane curves. Since \(\beta(0, b)\) is the intersection of \(M^2\) with a supporting hyperplane of Lemma 3.9 of [1], they are all Top sets [5], [6]. Since \(M^2\) is tight, all Top sets are convex plane curves (Lemma 1 of [6]).

Lemma 4. The open convex arc \(\alpha(0, a_1)\) in Lemma 3 can be extended to a closed convex plane curve \(\alpha(0, a)\) so that the product band \(B\) extends to all of \(M^2\).

Proof. As before, let \(B\) be covered by rectangles \(C_0, C_1', C_2, C_3', \cdots\). Start with \(C_0\). Instead of crossing the border curve \((\alpha(0, a_1), \beta(b_1))\) as in the proof of Lemma 2, we cross \((\alpha(a_1), \beta(0, b_1))\) to get a rectangle \(D_0'\) in \(\Lambda'\). By Lemma 2 \(\alpha(0, a_1)\) extends across \((\alpha(a_1), \beta(0, b_1))\) so that \(D_0'\) is the product of the extended portion \(\alpha(a_1, a_2)\) of \(\alpha(0, a_1)\) and those portions \(\beta(0, b_1)\) of \(\beta(0, b)\) which lie in \(C_0\). Meanwhile, from \(C_1'\) we cross \((\alpha(a_1), \beta(b_1, b_2))\) to get a plane \(D_1''\) of \(\Lambda''\), also from \(C_2\) to \(\Lambda'\) and so on. It can be seen that \(B\) will be doubled and tripled and so on, and \(M\) will be covered by the product \(\alpha(0, a) \times \beta(0, b)\). By the reason quoted from [6] in Lemma 3, \(\alpha(0, a)\) is a closed convex plane curve. Q.E.D.

We state final result as the theorem promised in §1.

Theorem. Let \(f: M^2 \rightarrow R^4\) be a tight isometric immersion of a compact flat manifold. Then \(f\) is a product embedding of plane convex closed curves (hence in particular \(M\) is a flat torus).

Remarks. (1) Tightness is necessary, because any product of plane curves will give an isometric immersion of the flat torus in \(R^4\) which is not necessarily tight.

(2) Flatness is also necessary, because tightness is preserved under any affine transformation; however, the Riemannian structure is not.

References

2. S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of
compact Riemann manifolds in Euclidean space, Ann. of Math (2) 56 (1952), 422–430.
MR 14, 408

3. S. S. Chern and R. K. Lashof, On the total curvature of immersed manifold,
927; 20 #4301.

4. B. W. Hempstead, Tight immersions in higher dimensions, Thesis, University of
Minnesota, Minneapolis, Minn., 1970.

5. N. H. Kuiper, Immersion with minimal absolute total curvature, Invent. Math.

6. ———, Tight topological embeddings of the Moebius band, J. Differential Geometry
6 (1972), 271–283.

Math. 13 (1971), 179–204.

8. J. D. Moore, Isometric immersion of Riemannian products, J. Differential Geometry

9. B. O’Neill, Isometric immersion of flat Riemannian manifolds in Euclidean space,

Department of Mathematics, University of Minnesota, Minneapolis, Minnesota
55455