FINITE DIMENSIONAL GROUP RINGS

RALPH W. WILKERSON

Abstract. A ring is right finite dimensional if it contains no infinite direct sum of right ideals. We prove that if a group ring RG is right finite dimensional if and only if the group ring RG is right finite dimensional. A ring R is a self-injective cogenerator ring if R is injective and R is a cogenerator in the category of unital right R-modules; this means that each right unital R-module can be embedded in a direct product of copies of R. Let G be a finite group where the order of G is a unit in R. Then the group ring RG is a self-injective cogenerator ring if and only if R is a self-injective cogenerator ring. Additional applications are given.

1. Introduction. Let R always denote an associative ring with 1 and G a group with order $|G|$. The group ring of a group G and a ring R is the ring of all formal sums $\sum_{g \in G} r(g)g$ with $r(g) \in R$ and with only finitely many nonzero $r(g)$ [7]. For a right finite dimensional ring R, there exists an integer n such that R contains a direct sum of n-summands and the number of summands of any other direct sum in R is at most n. In this case, we write $\text{dim } R = n$. The ring R will be considered as a right R-module R_R and by finite dimensional we shall mean right finite dimensional.

It is known that if H is any semigroup with 1, then RH is a ring. In particular, the polynomial ring is a special case of this construction. Shock has shown that the right finite dimensional property carries over to polynomial rings [10]. This paper extends this result to group rings.

If R is a subring of Q and the identity of R is also the identity of Q, then R is a right order in Q if

(a) every nonzero divisor of R is a unit in Q, and

(b) every element of Q can be written in the form of cd^{-1} where c and d are in R and d is a nonzero divisor of R. We prove that if G is a finite group, then R is a right order in a self-injective cogenerator ring and the order of no finite normal subgroup of G is a zero-divisor in R.

Presented to the Society, January 28, 1973; received by the editors February 27, 1973.

Key words and phrases. Group ring, injective, order, cogenerator, rationally closed, dense right ideal, complete ring of quotients, right finite dimensional.

1 This article is part of the author’s doctoral thesis which was written under the direction of Professor Robert C. Shock.

© American Mathematical Society 1973
if and only if RG is a right order in a self-injective cogenerator ring. Let G be a free abelian group. If R is a right order in a right Artinian ring then RG is a right order in a right Artinian ring.

2. Finite dimensional group rings. It is always true that if RG is finite dimensional then R is finite dimensional; however, the converse is not in general true.

Example 2.1. There exists a finite dimensional ring R and a group G such that the group ring RG is not finite dimensional. Let R be a field of characteristic zero and $G = \bigoplus \sum_{C_p}$ (for all prime p), where C_p is a cyclic group of order p. Then RG is not finite dimensional. This follows from the fact that RG is regular and the right ideal $\omega(C_p)$ of RG generated by $\{1-h|h \in C_p\}$ is principal [2]. So the question naturally arises as to when the group ring RG is finite dimensional.

Proposition 2.2 (Shok [10]). A ring R is finite dimensional if and only if the polynomial ring $R[x_1, x_2, \ldots]$ is finite dimensional. Furthermore, $\dim R = \dim R[x_1, x_2, \ldots]$.

Proof. See Theorem 2.6 of [10].

Let R be a subring of S, then we call S a ring of right quotients of R, if for every $0 \neq s \in S$ and for every $s' \in S$, there exists $r \in R$ such that $sr \neq 0$ and $s'r \in R$. Let $Q(R)$ denote the complete ring of quotients of R. It is well known that R is finite dimensional if and only if $Q(R)$ is, and in this case $\dim R = \dim Q(R)$. It is also known that if S is a ring of right quotients of R then $Q(R)$ is the complete ring of quotients of S [4].

Theorem 2.3. Let G be an infinite cyclic group, then R is finite dimensional if and only if RG is finite dimensional. Furthermore, $\dim R = \dim RG$.

Proof. Let S be a multiplicative semigroup isomorphic to the nonnegative integers. Then S is a semigroup with identity and is generated by the nonnegative powers of some element, say g. By Proposition 2.2, it is clear that RS is finite dimensional, since RS is just a polynomial ring in the variable g. Now S can be embedded in an infinite cyclic group G, which is generated by all powers of g. We need only show that RG is a ring of right quotients of RS. Let $r_1, r_2 \in RG$ with

$$0 \neq r_1 = r_1(g_1)g_1 + \cdots + r_1(g_n)g_n = r_1(g_1)g^{a_1} + \cdots + r_1(g_n)g^{a_n}$$

and

$$r_2 = r_2(h_1)h_1 + \cdots + r_2(h_m)h_m = r_2(h_1)g^{b_1} + \cdots + r_2(h_m)g^{b_m}.$$
Let \(k = \max\{|a_i|, |b_j|\} \) for all \(1 \leq i \leq n \) and \(1 \leq j \leq m \). It is clear that
\[r = g^k \in RS, \ r_1r \neq 0, \text{ and } r_2r \in RS. \] Hence, \(RG \) is finite dimensional. Also,
\[\dim Q(RS) = \dim RS = \dim R \] shows that \(\dim R = \dim RG \). The converse is clear.

A free abelian group is a group which is a direct sum of infinite cyclic groups.

Corollary 2.4. Let \(G \) be a free abelian group, then \(R \) is finite dimensional if and only if \(RG \) is finite dimensional. Furthermore, \(\dim R = \dim RG \).

Proof. Let \(H = S_1 \oplus S_2 \oplus \cdots \) where each \(S_i \) is a multiplicative semigroup isomorphic to the nonnegative integers. If \(R \) is finite dimensional then \(RH \) is finite dimensional by Proposition 2.2. Let \(G = G_1 \oplus G_2 \oplus \cdots \), where \(S_i \) is embedded in the infinite cyclic group \(G_i \), and now show that \(RG \) is a ring of right quotients of \(RH \). The details are omitted. The converse and \(\dim R = \dim RG \) follow easily.

Lemma 2.5. For a finite group \(G \), the group ring \(RG \) is finite dimensional if and only if the ring \(R \) is finite dimensional. Also, \(\dim R \leq \dim RG \leq \dim R \cdot |G| \).

Proof. Let \(G \) be finite, then \(RG_R \) is \(R \)-isomorphic to a direct sum of \(|G| \) copies of the finite dimensional \(R \)-module \(R \). Hence, \(RG \) is a finite dimensional \(R \)-module and therefore a finite dimensional \(RG \)-module. The converse and inequalities are clear.

Theorem 2.6. Let \(G \) be a finitely generated abelian group, then \(R \) is finite dimensional if and only if \(RG \) is finite dimensional. If \(H \) is the torsion subgroup of \(G \), then \(\dim R \leq \dim RG \leq \dim R \cdot |H| \).

Proof. If \(G \) is a finitely generated abelian group then \(G = G_1 \oplus G_2 \oplus \cdots \oplus G_n \oplus H \) where \(|H| < \infty \) and \(G_i \) for \(1 \leq i \leq n \) is an infinite cyclic group. As in [2, p. 673], we define \(A_1 = RG_1, \ A_2 = A_1G_2, \cdots, \ A_n = A_{n-1}G_n, \) and \(A = A_nH \); clearly \(RG \cong A \). By Corollary 2.4 and Lemma 2.5, we see by induction that \(A \) is finite dimensional and consequently \(RG \) is finite dimensional. The converse and inequalities follow easily.

3. **Applications.** Let \(Z(R) \) denote the right singular ideal of \(R \) (4).

Lemma 3.1. Let \(G \) be a free abelian group, then \(Z(RG) = Z(R)G \).

Proof. The proof uses the same technique as the proof of Theorem 2.7 of [10].

Proposition 3.2 (Connell, [2]). The group ring \(RG \) is semiprime if and only if \(R \) is semiprime and the order of no finite normal subgroup is a zero-divisor in \(R \).

Proof. See the appendix of [4].
It is well known that a semiprime Goldie ring is a semiprime, finite dimensional ring with zero singular ideal.

Corollary 3.3. Let G be a free abelian group. A ring R is a semiprime Goldie ring if and only if RG is a semiprime Goldie ring.

Proof. The proof is immediate.

Proposition 3.4 (Burgess, [1]). If $Z(RG)=0$, then $Z(R)=0$ and the order of every finite normal subgroup of G is a nonzero-divisor in R.

Proof. See Theorem 4.8 of [1].

A *locally normal group* is one in which every finite subset is contained in a finite normal subgroup.

Proposition 3.5 (Burgess, [1]). Assume that G is locally normal and the order of every finite normal subgroup of G is a nonzero-divisor in R. If $Z(R)=0$, then $Z(RG)=0$.

Proof. See 4.9 of [1].

Corollary 3.6. Let G be a finitely generated abelian group. Then R is a semiprime Goldie ring and the order of every finite normal subgroup of G is a nonzero-divisor in R if and only if RG is a semiprime Goldie ring.

Proof. The proof is immediate using the construction in the proof of Theorem 2.6.

A right ideal of a ring R is said to be *essential* if it has nonzero intersection with every nonzero right ideal of R. A right ideal D of R is *dense* if for every $0 \neq r_1 \in R$ and for every $r_2 \in R$ there exists $r \in R$ such that $r_1 r \neq 0$ and $r_2 r \in D$. We denote the Jacobson radical of R by Rad R. A right ideal A is said to be *small* if for every right ideal B, $A+B=R$ implies $B=R$. It is known that A is small if and only if $A \subseteq \text{Rad } R$.

The following remarks are well known.

Remark 3.7. A right ideal D is dense in R if and only if DG is dense in RG.

Remark 3.8. A right ideal L is essential in R if and only if LG is essential in RG.

A right ideal B is *rationally closed* in R if $x^{-1}B = \{ r \in R \mid xr \in B \}$ is not dense for all $x \in R - B$. Let $I(R)$ denote the injective hull of R, then B is rationally closed in R if there exists a subset S of $I(R)$ such that $B = \{ x \in R \mid Sx = 0 \}$ [8].

Lemma 3.9. A right ideal K of R is rationally closed in R if and only if KG is rationally closed in RG.
Proof. If K is rationally closed then there exists a subset $S \subseteq I(R)$ such that $K = \{x \in R|Sx = 0\}$. We will show that $KG = \{x \in RG|SGx = 0\}$. Let $x \in KG$ then $SGx = 0$ since $Sk = 0$ for all $k \in K$. Hence $x \in \{x \in RG|SGx = 0\}$. Now suppose $0 \neq x \notin KG$. We want to show there exists $y \in SG$ such that $yx \neq 0$. Let $x = r_1(g_1)g_1 + \cdots + r_n(g_n)g_n$, since $x \notin KG$ there exists $r_i(g_i)$ such that $r_i(g_i) \notin K$. K is rationally closed so there exists $0 \neq s \in S$ such that $sr_i(g_i) \neq 0$. Hence, $sx \neq 0$ implies $x \notin \{x \in RG|SGx = 0\}$.

Conversely, suppose K is not rationally closed in R, then there exists $x \in R - K$ such that $x^{-1}K$ is dense in R. Thus $(x^{-1}K)G = x^{-1}KG$ is dense in RG and hence KG is not rationally closed in RG.

Proposition 3.10 (Renault, [6]). The group ring RG is self-injective if and only if R is self-injective and G is finite.

Proof. See [6].

Lemma 3.11 (Shock, [9]). Let R be a self-injective ring. Then R is a cogenerator if and only if R is right finite dimensional and $Z(R)$ is rationally closed.

Proof. See Proposition 2 of [9].

If R is a self-injective ring then $Z(R) = \text{Rad } R$ [4]. It is known that if R is self-injective and finite dimensional then $R/\text{Rad } R$ is completely reducible.

Theorem 3.12. Let G be a finite group where the order of G is a unit in R, then R is a self-injective cogenerator ring if and only if RG is a self-injective cogenerator ring.

Proof. Let R be a self-injective cogenerator ring. It is clear that RG is finite dimensional and injective. By Lemma 3.11, we need only show that $Z(RG)$ is rationally closed. It is clear that if R contains no proper dense right ideals then every right ideal is rationally closed and conversely. So, we shall show that RG contains no proper dense right ideals. Let D be a dense right ideal of RG. Then $D + Z(R)G$ is dense and by Proposition 5.1 of [8], $(D + Z(R)G)/Z(R)G$ is dense in $RG/Z(R)G$ since $Z(R)G$ is rationally closed. Clearly, $RG/Z(R)G$ and $R/Z(R)$ are completely reducible. Therefore, $(R/Z(R))G \cong RG/Z(R)G$ is completely reducible [2] and thus $RG/Z(R)G$ contains no proper dense right ideals. Hence, $D + Z(R)G = RG$. But $Z(R)G \subset Z(RG) = \text{Rad } RG$ implies $Z(R)G$ is small. Hence, $D = RG$.

Conversely, let D be dense in R, $D \neq R$, then DG is dense in RG and $DG \neq RG$.
Lemma 3.13 (Shock, [9]). Suppose that $Z(Q(R))$ is the Jacobson radical of $Q(R)$ and is rationally closed. If $Q(R)/Z(Q(R))$ is a completely reducible ring and $R/Z(R)$ is semiprime, then R is a right order in $Q(R)$.

Proof. See Proposition 4 of [9].

Theorem 3.14. Let G be a finite group, then R is a right order in a self-injective cogenerator ring and the order of no finite normal subgroup of G is a zero-divisor in R if and only if RG is a right order in a self-injective cogenerator ring.

Proof. Let R be a right order in a self-injective cogenerator ring Q, then $Q = Q(R)$. By 3.6 of [1], we have $Q(RG) \cong Q(R)G$ and thus by Theorem 3.12 $Q(RG)$ is a self-injective cogenerator ring. It is now clear that both $Q(RG)/Z(Q(RG))$ and $Q(R)/Z(Q(R))$ are completely reducible. Also, it is clear that $Q(RG)/Z(Q(RG))G$ is completely reducible and that $RG/Z(RG)$ is semiprime. By Lemma 3.13 we need only to show that $RG/Z(RG)$ is semiprime. To do this, we first show that $Z(RG) = Z(RG)$. It is sufficient to show that $Z(Q(RG)) = Z(Q(R))G$ since $Z(RG) = Z(Q(RG)) \cap RG = Z(Q(RG)) \cap RG = Z(Q(R))G \cap RG = Z(RG)$. Now $(Q(R)/(Z(Q(R))))G \cong Q(RG)/Z(Q(R))G \cong Q(R)/Z(Q(R))G$. Hence, $Z(Q(R))G = Z(Q(RG))$ since $Q(RG)/Z(Q(R))G$ is completely reducible. The converse follows similarly.

In [12] Smith showed that if G is a poly- (cyclic or finite) group and R is a right order in a right Artinian ring then RG is a right order in a right Artinian ring. We extend this result to a class of group rings, where G need not be poly- (cyclic or finite), using a method of Small [11].

Theorem 3.15. Let G be a free abelian group. If R is a right order in a right Artinian ring then RG is a right order in a right Artinian ring.

Proof. It is clear that $rad (RG) = (rad R)G$ when G is free abelian. We now use the same argument as in Theorem 3.6 of [10].

References

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901