The approximation property does not imply the bounded approximation property
HTML articles powered by AMS MathViewer
- by T. Figiel and W. B. Johnson
- Proc. Amer. Math. Soc. 41 (1973), 197-200
- DOI: https://doi.org/10.1090/S0002-9939-1973-0341032-5
- PDF | Request permission
Abstract:
There is a Banach space which has the approximation property but fails the bounded approximation property. The space can be chosen to have separable conjugate, hence there is a nonnuclear operator on the space which has nuclear adjoint. This latter result solves a problem of Grothendieck [2],References
- Per Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math. 130 (1973), 309–317. MR 402468, DOI 10.1007/BF02392270
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- William B. Johnson, A complementary universal conjugate Banach space and its relation to the approximation problem, Israel J. Math. 13 (1972), 301–310 (1973). MR 326356, DOI 10.1007/BF02762804
- W. B. Johnson, H. P. Rosenthal, and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506. MR 280983, DOI 10.1007/BF02771464
- Joram Lindenstrauss, On James’s paper “Separable conjugate spaces”, Israel J. Math. 9 (1971), 279–284. MR 279567, DOI 10.1007/BF02771677 A. Pełczyński, Collected letters (unpublished).
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 41 (1973), 197-200
- MSC: Primary 46B05; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9939-1973-0341032-5
- MathSciNet review: 0341032