Localization at injectives in complete categories
HTML articles powered by AMS MathViewer
- by J. Lambek and B. A. Rattray
- Proc. Amer. Math. Soc. 41 (1973), 1-9
- DOI: https://doi.org/10.1090/S0002-9939-1973-0414651-5
- PDF | Request permission
Abstract:
We consider a complete category $\mathcal {A}$. For each object $I$ of $\mathcal {A}$ we define a functor $Q:\mathcal {A} \to \mathcal {A}$ and obtain a necessary and sufficient condition on $I$ for $Q$, after restricting its codomain, to become a reflector of $\mathcal {A}$ onto the limit closure of $I$. In particular, this condition is satisfied if $I$ is injective in $\mathcal {A}$ with regard to equalizers. Among the special cases of such reflectors are: the reflector onto torsion-free divisible objects associated to an injective $I$ in $\operatorname {Mod} R$; the Samuel compactification of a uniform space; the Stone-Čech compactification. We give a second description of $Q$ in terms of a triple on sets. If $I$ is injective and the functor $Q$ is equivalent to the identity then, under a few extra conditions on $\mathcal {A},{\mathcal {A}^{{\text {op}}}}$ is triplable over sets with regard to the functor taking $A$ to $\mathcal {A}(A,I)$.References
- Eduard Čech, On bicompact spaces, Ann. of Math. (2) 38 (1937), no. 4, 823–844. MR 1503374, DOI 10.2307/1968839
- Sabah Fakir, Monade idempotente associée à une monade, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A99–A101 (French). MR 257174
- Peter Freyd, Aspect of topoi, Bull. Austral. Math. Soc. 7 (1972), 1–76. MR 396714, DOI 10.1017/S0004972700044828
- Peter Gabriel and Friedrich Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Mathematics, Vol. 221, Springer-Verlag, Berlin-New York, 1971 (German). MR 0327863
- J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323
- M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85–91. MR 50264, DOI 10.4064/fm-38-1-85-91
- Joachim Lambek, Torsion theories, additive semantics, and rings of quotients, Lecture Notes in Mathematics, Vol. 177, Springer-Verlag, Berlin-New York, 1971. With an appendix by H. H. Storrer on torsion theories and dominant dimensions. MR 0284459
- F. E. J. Linton, Some aspects of equational categories, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 84–94. MR 0209335
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- Ulrich Oberst, Duality theory for Grothendieck categories and linearly compact rings, J. Algebra 15 (1970), 473–542. MR 447371, DOI 10.1016/0021-8693(70)90051-7
- Basil A. Rattray, Torsion theories in non-additive categories, Manuscripta Math. 12 (1974), 285–305. MR 340360, DOI 10.1007/BF01155518
- Pierre Samuel, Ultrafilters and compactification of uniform spaces, Trans. Amer. Math. Soc. 64 (1948), 100–132. MR 25717, DOI 10.1090/S0002-9947-1948-0025717-6
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 41 (1973), 1-9
- MSC: Primary 18A35
- DOI: https://doi.org/10.1090/S0002-9939-1973-0414651-5
- MathSciNet review: 0414651