Localization at injectives in complete categories
Authors:
J. Lambek and B. A. Rattray
Journal:
Proc. Amer. Math. Soc. 41 (1973), 1-9
MSC:
Primary 18A35
DOI:
https://doi.org/10.1090/S0002-9939-1973-0414651-5
MathSciNet review:
0414651
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We consider a complete category
. For each object
of
we define a functor
and obtain a necessary and sufficient condition on
for
, after restricting its codomain, to become a reflector of
onto the limit closure of
. In particular, this condition is satisfied if
is injective in
with regard to equalizers. Among the special cases of such reflectors are: the reflector onto torsion-free divisible objects associated to an injective
in
; the Samuel compactification of a uniform space; the Stone-Čech compactification.
We give a second description of
in terms of a triple on sets. If
is injective and the functor
is equivalent to the identity then, under a few extra conditions on
is triplable over sets with regard to the functor taking
to
.
- [1] Eduard Čech, On bicompact spaces, Ann. of Math. (2) 38 (1937), no. 4, 823–844. MR 1503374, https://doi.org/10.2307/1968839
- [2] Sabah Fakir, Monade idempotente associée à une monade, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A99–A101 (French). MR 0257174
- [3] Peter Freyd, Aspect of topoi, Bull. Austral. Math. Soc. 7 (1972), 1–76. MR 0396714, https://doi.org/10.1017/S0004972700044828
- [4] Peter Gabriel and Friedrich Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Mathematics, Vol. 221, Springer-Verlag, Berlin-New York, 1971 (German). MR 0327863
- [5] J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323
- [6] M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85–91. MR 0050264, https://doi.org/10.4064/fm-38-1-85-91
- [7] Joachim Lambek, Torsion theories, additive semantics, and rings of quotients, With an appendix by H. H. Storrer on torsion theories and dominant dimensions. Lecture Notes in Mathematics, Vol. 177, Springer-Verlag, Berlin-New York, 1971. MR 0284459
- [8] F. E. J. Linton, Some aspects of equational categories, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 84–94. MR 0209335
- [9] Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. MR 0354798
- [10] Ulrich Oberst, Duality theory for Grothendieck categories and linearly compact rings, J. Algebra 15 (1970), 473–542. MR 0447371, https://doi.org/10.1016/0021-8693(70)90051-7
- [11] Basil A. Rattray, Torsion theories in non-additive categories, Manuscripta Math. 12 (1974), 285–305. MR 0340360, https://doi.org/10.1007/BF01155518
- [12] Pierre Samuel, Ultrafilters and compactification of uniform spaces, Trans. Amer. Math. Soc. 64 (1948), 100–132. MR 0025717, https://doi.org/10.1090/S0002-9947-1948-0025717-6
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18A35
Retrieve articles in all journals with MSC: 18A35
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1973-0414651-5
Keywords:
Localization,
reflective subcategory,
injective,
triple,
torsion theory
Article copyright:
© Copyright 1973
American Mathematical Society


