BOUNDED APPROXIMATE UNITS AND BOUNDED APPROXIMATE IDENTITIES

JOSEF WICHMANN

Abstract. In this paper we establish the equivalence of the general concept of bounded approximate units in a normed algebra with the traditionally used notion of a bounded approximate identity. Furthermore, we investigate pointwise-bounded approximate units in commutative normed algebras.

Let A be a normed algebra. A net $\{e_\lambda\}_{\lambda \in \Lambda}$ of elements in A is called a bounded left approximate identity in A if there exists a constant K such that $\|e_\lambda\| \leq K$ for all $\lambda \in \Lambda$ and $\lim_{\lambda \in \Lambda} e_\lambda x = x$ for all $x \in A$.

A normed algebra A has bounded left approximate units if there exists a constant K such that for every $x \in A$ and every $\varepsilon > 0$ there exists an element $u \in A$ (depending on x and ε) such that $\|u\| \leq K$ and $\|x - ux\| < \varepsilon$.

We say that a normed algebra A has pointwise-bounded left approximate units if for every $x \in A$ there exists a constant $K(x)$ such that for every $\varepsilon > 0$ there exists an element $u \in A$ (depending on x and ε) such that $\|u\| \leq K(x)$ and $\|x - ux\| < \varepsilon$.

Obviously, every normed algebra with a bounded left approximate identity has bounded left approximate units. Theorem 1 states the converse; the proof given below was kindly communicated to the author by Sadahiro Saeki and replaces our original proof. The argument is a modification of that given by H. Reiter in [1, p. 30].

Furthermore, we show that a commutative normed algebra with pointwise-bounded approximate units has an approximate identity. The fact that we cannot assert the existence of a bounded approximate identity is illustrated by an example. But it turns out that the concept of pointwise-bounded approximate units is equivalent to the notion of a bounded approximate identity in commutative Banach algebras and also in commutative normed algebras which do not consist entirely of topological divisors of zero.

The general concept of approximate units in a normed algebra was...
considered (under various names) by several authors; e.g. H. Reiter [1, pp. 27ff.] and H. C. Wang [2].

The author wishes to thank Professor R. S. Doran for constant encouragement and kind advice.

Theorem 1. A normed algebra A has left approximate units bounded by a constant K if and only if A has a left approximate identity bounded by the same constant K.

Proof. Let A be a normed algebra with left approximate units bounded by a constant K. With the usual convention about the formal role of 1, the assumption takes the following form: for every $x \in A$ and $\varepsilon > 0$ there exists an element $u \in A$ such that $\|u\| \leq K$ and $\|(1-u)x\| < \varepsilon$.

Now let x_1, \cdots, x_n be any finite set of elements in A. Given $\varepsilon > 0$, we can choose successively u_1, \cdots, u_n in A such that

$$\|u_i\| \leq K \quad \text{and} \quad \|(1-u_1) \cdots (1-u_i)x_i\| < \varepsilon$$

for all $i=1, 2, \cdots, n$. Define v in A by $1-v = (1-u_n) \cdots (1-u_1)$. Then

$$\|x_i - vx_i\|$$

$$= \|[(1-u_n) \cdots (1-u_{i+1})] \cdot [(1-u_i) \cdots (1-u_1)x_i]\|$$

$$\leq (1 + K)^{n-i} \cdot \|(1-u_i) \cdots (1-u_1)x_i\| < (1 + K)^n \cdot \varepsilon.$$

Finally we choose u in A with $\|u\| \leq K$ and $\|v - uv\| < \varepsilon$. Then for each $i=1, 2, \cdots, n$ we have

$$\|x_i - ux_i\| \leq \|x_i - vx_i\| + \|(v - uv)x_i\| + \|u(x_i - vx_i)\|$$

$$\leq \|x_i - vx_i\| + \|v - uv\| \cdot \|x_i\| + K \cdot \|x_i - vx_i\|$$

$$< (1 + K)^n \cdot \varepsilon + \|x_i\| \cdot \varepsilon + (1 + K)^{n+1} \cdot \varepsilon.$$

Hence, for every finite set x_1, \cdots, x_n of elements in A and every $\varepsilon > 0$, there exists an element u in A such that $\|u\| \leq K$ and $\|x_i - ux_i\| < \varepsilon$ for $i=1, \cdots, n$. Using a well-known construction [1, p. 27] we conclude that the normed algebra A has a left approximate identity bounded by the constant K.

Theorem 2. A commutative normed algebra with pointwise-bounded approximate units has an approximate identity (possibly unbounded).

A commutative normed algebra A which does not consist entirely of topological divisors of zero has pointwise-bounded approximate units if and only if A has a bounded approximate identity.

Proof. Let A be a commutative normed algebra with pointwise-bounded approximate units. If A does not consist entirely of topological
divisors of zero, let \(x_0 \) be an element in \(A \) which is not a topological divisor of zero; otherwise set \(x_0 = 0 \).

Now let \(x_1, \ldots, x_n \) be any finite set of elements in \(A \). Set

\[
K = K(x_0, x_1, \ldots, x_n) = \max\{K(x_0), K(x_1), \ldots, K(x_n)\}.
\]

Given \(\varepsilon > 0 \) there exist elements \(u_0, u_1, \ldots, u_n \) in \(A \) such that \(\|u_i\| \leq K \) and \(\|x_i - u_i x_i\| < \varepsilon \) for all \(i = 0, 1, \ldots, n \).

Define \(u \) in \(A \) by \(1 - u = (1 - u_n) \cdots (1 - u_1)(1 - u_0) \). Then

\[
\|x_i - ux_i\| = \|(1 - u_n) \cdots (1 - u_1)(1 - u_0)x_i\| \leq (1 + K)^n \cdot \|(1 - u_i)x_i\| < (1 + K)^n \cdot \varepsilon.
\]

Hence, for every finite set \(x_1, \ldots, x_n \) of elements in \(A \) and every \(\varepsilon > 0 \) there exists an element \(u \) in \(A \) such that \(\|x_i - u x_i\| < \varepsilon \) for all \(i = 0, 1, \ldots, n \). If \(x_0 \) is not a topological divisor of zero, it follows from the inequality \(\|ux_0\| < \varepsilon + \|x_0\| \) that the elements \(u \) are bounded by some fixed constant. Thus the assertion of Theorem 2 follows.

The next example shows that we cannot in general assert the existence of a bounded approximate identity.

Example. Consider the commutative normed algebra

\[
A = \{(\lambda_1, \lambda_2, \cdots) \mid \lambda_i \text{ complex and } \lambda_i = 0 \text{ for almost all } i\}
\]

with coordinatewise algebraic operations and norm defined by

\[
\|(\lambda_1, \lambda_2, \cdots)\| = \max_i |i \cdot \lambda_i|.
\]

Then \(A \) has pointwise-bounded approximate units \(u = (1, \cdots, 1, 0, 0, \cdots) \) Obviously, \(A \) has no bounded approximate identity.

Theorem 3. A commutative Banach algebra \(A \) has pointwise-bounded approximate units if and only if \(A \) has a bounded approximate identity.

Proof. Let \(A \) be a commutative Banach algebra with pointwise-bounded approximate units. Define \(A_n = \{x \in A \mid \lim_i u_i x = x \text{ for some sequence } (u_i) \text{ in } A \text{ with } \|u_i\| \leq n\}, n = 1, 2, \cdots \).

\(A_n \) is a closed subset of \(A \). For if \((x_i) \) is a sequence in \(A_n \) with \(\lim_j x_j = x \), then there exist sequences \((u_{ij}) \) in \(A \) such that \(\|u_{ij}\| \leq n \) and \(\lim_i u_{ij} x_j = x_j \). Then

\[
\|x - u_{ij} x_j\| \leq \|x - x_j\| + \|x_j - u_{ij} x_j\| + \|u_{ij} x_j - u_{ij} x\| \leq \|x - x_j\| + \|x_j - u_{ij} x_j\| + \|u_{ij} \| \cdot \|x_j - x\| \leq (1 + n) \cdot \|x - x_j\| + \|x_j - u_{ij} x_j\|;
\]

choosing first \(j \) and then \(i \) large enough, it follows that \(\|x - u_{ij} x\| \) can be made arbitrarily small. Hence \(x \in A_n \).
Since A is the union of the sets A_n, $n=1, 2, \cdots$, and A is a Banach space, it follows from the Baire category theorem that some A_n has nonempty interior. Thus $B(x_0, \delta) = \{x \in A | \|x-x_0\| < \delta\}$ is a subset of A_m for some $x_0 \in A$, $\delta > 0$ and m. We will show that $B(0, \delta) = \{x \in A | \|x\| < \delta\}$ is a subset of $A_{(2+m)m}$. Let $x \in B(0, \delta)$; then $x = (x+x_0)-x_0$ with $x+x_0$ and x_0 in $B(x_0, \delta)$. Hence there exist sequences (u_i) and (v_i) in A such that $\|u_i\| \leq m$, $\|v_i\| \leq m$, $\lim_i u_i(x+x_0) = x+x_0$ and $\lim_i v_i x_0 = x_0$. Set $w_i = u_i + v_i - u_i v_i$; then (w_i) is a sequence in A with $\|w_i\| \leq (2+m)m$ and $\lim_i w_i x = x$; i.e. x is in $A_{(2+m)m}$.

Since $\lambda \cdot A_{(2+m)m}$ is a subset of $A_{(2+m)m}$ for any scalar λ, it follows that $A_{(2+m)m} = A$; i.e. A has bounded approximate units and so, by Theorem 1, A has a bounded approximate identity.

Added in proof. It was stated by M. Altman (Contracteurs dans les algèbres de Banach, C.R. Acad. Sci. Paris Sér. A 274 (1972), A399–A400; Lemme 1) that every Banach algebra with bounded left approximate units has a bounded left approximate identity. The proof will appear in his paper on Contractors, approximate identities and factorization in Banach algebras in the Pacific J. Math.

It was proved by Teng-sun Liu, Arnoud van Rooij and Ju-kwei Wang (Projections and approximate identities for ideals in group algebras, Trans. Amer. Math. Soc. 175 (1973), 469–482; Lemma 12) that every commutative Banach algebra with pointwise-bounded approximate units has bounded approximate units.

REFERENCES

Department of Mathematics, Texas Christian University, Fort Worth, Texas 76129