Bifurcation at eigenvalues of odd multiplicity
HTML articles powered by AMS MathViewer
- by David Westreich
- Proc. Amer. Math. Soc. 41 (1973), 609-614
- DOI: https://doi.org/10.1090/S0002-9939-1973-0328707-9
- PDF | Request permission
Abstract:
The most general form of the bifurcation problem is considered. Under reasonable hypotheses, “eigenvalues” of odd multiplicity are shown to be bifurcation points.References
- Melvyn Berger and Marion Berger, Perspectives in nonlinearity. An introduction to nonlinear analysis. , W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0251744
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI 10.1016/0022-1236(71)90015-2
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- Seymour Goldberg, Unbounded linear operators: Theory and applications, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0200692
- M. M. Vainberg, Variational methods for the study of nonlinear operators, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964. With a chapter on Newton’s method by L. V. Kantorovich and G. P. Akilov. Translated and supplemented by Amiel Feinstein. MR 0176364
- David Westreich, Banach space bifurcation theory, Trans. Amer. Math. Soc. 171 (1972), 135–156. MR 328706, DOI 10.1090/S0002-9947-1972-0328706-0
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 41 (1973), 609-614
- MSC: Primary 47H15
- DOI: https://doi.org/10.1090/S0002-9939-1973-0328707-9
- MathSciNet review: 0328707