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OSCILLATION IN FIRST  ORDER NONLINEAR RETARDED
ARGUMENT DIFFERENTIAL EQUATIONS

WARREN  E.   SHREVE

Abstract. A result of Ladas; Lakshmikantham, and Papadakis

[1] concerning oscillation caused by lag in linear first order retarded

argument differential equations is generalized to the sublinear case.

Examples showing that such generalization to the superlinear case

is impossible are given.

0. Introduction.    It is known ([1], for example) that

(A) g e C(R, R), g(t) < t for t e R, g(t) is strictly increasing on R

and lim g(t)= + oo, t—>-+ co,

(B) a(t) locally integrable, a(t)=0 a.e., and

(C) lim sup,^ §lw a(s)ds>l,
together imply that every solution to

(1) x'(t) + a(t)x(g(t)) = 0

is oscillatory, i.e. has arbitrarily large zeros. We show in this note that

this result can be generalized to the sublinear case but a corresponding

generalization to the superlinear case fails.

In particular we consider the more general retarded argument differ-

ential equation

(2) x'(t) + a(t)f(x(g(t))) = 0

for t e [b, + oo) where

(D) xf(x)>0 for X9*0,feC(R, R), f is nondecreasing with |/(x)|->-
+ 00 as |x|—>-+co.

We also assume g(t) satisfies (A) and a(t) satisfies (B).

We shall call / generalized sublinear in case limx^0(x/f(x)) = M< + co,

for some M. This includes the sublinear case (see [2]) f(x)=x", 0<<x<l,

as well as the linear case. Similarly, / is generalized superlinear in case

limx^0(x/f(x))= + oo.  For simplicity we drop the word "generalized".

1. Sublinear case.    We begin with a lemma.

Lemma 1.1. For g satisfying (A) and {tn} defined by t0e R arbitrary and

ti+^g-^tA, tn-++ co as h^oo.
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Proof. If result is false, t„ f ß< + oo, and by the continuity of g, and,

hence, g_1, /3=lim r„ = lim g~1(tn+x)=g"1(ß)>ß. Contradiction.

We are now ready to prove a generalization of the result stated in the

Introduction.

Theorem 1.    Iff is sublinear and satisfies (D), if

x r
lim- = M,       lim sup       a(s) ds> M
x->of(x) i-oo       Jg(t)

then every solution to (2) is oscillatory.

Proof. First suppose that lim sup^^ j"£(<) a(s)ds—M+2K where

^f>0. Let x be a nonoscillatory solution. Then eventually \x(t)\>0.

Without loss in generality assume x(r)>0 beyond r0. Then x'(t) =

—a(t)f(x(g(t)))=0 beyond tx=g~1(t0). Thus x is nonincreasing and has

a finite nonnegative limit a as f—>-+co. Now, <x=0. For, if not, <x>0

and /(a)>0. By the integral condition, given /*, there is r_i* with

fj<r) a(s)ds—M+K. Inductively define a sequence {s„} asfollows. Let5,0=r0

and sx=g~1(s0) such that jsg\s, a(s)ds>M+K. Having defined s„_x, let

s„=g~~1(s„_x) be such that fj», ( a(s) ds>M+K. Then integrating we have

/•in

x(sn) - x(s0) = -      a(s)f(x(g(s))) ds
Jit

= -/(a) J i" a(s) ds = -/(a) J (" a(s) ds
1=1 Jsi-l ¿=1 •'i(si)

< -f(a)n(M + K).

Thus x(sn)->— oo as n->co which contradicts x(t)=a for t=s0, and

a=0 as claimed.

Beyond g_1(ii), x(g(t)) is nonincreasing and converging to zero as

r—»-+00. Thus, given e=K/2>0 there is a r2^g_1(A) such that t = t2

implies x(g(t))¡f(x(g(t)))<M+K¡2. Choose F such that g(F) = r2, and

$fiT) a(s)ds>M+K. Then

x(F) - x(g(T)) =-\T a(s)f(x(g(s))) ds

= -[T a(s)dsf(x(g(T))) < -(M + K)f(x(g(T)))

_ijMHL + ̂ /(x(g(T))) < -*(g(D).
\/(x(g(F)))      2/JV

Thus,   x(F)<0,   contradicting   its   assumed   nonoscillatory   behavior.

Therefore, x(t) is an oscillatory solution.
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2. Superlinear case. The following example shows that nonoscillation

is possible for/superlinear even though a(t) is nontrivial and satisfies a

condition stronger then (C). Let f(x)=x3, a(t)=(t—y/t)3t~2 and g(t) =

t—y/t. Consider the interval [2, +00). On /, x(t)=t~1 is a nonoscillatory

solution and lim¡^+oc/ JJ(() a(s) ds= + 00.

Of course, if a(t)=0 then all solutions are eventually constant. How-

ever, such a function a destroys the superlinearity off. We now show that it

is possible to construct a nonzero a(t) for g satisfying (A) and / super-

linear satisfying (D), such that equation (2) has an oscillatory solution.

To this end we prove the following lemma.

Lemma 2.1. Let Zx be the first zero of the solution of (2) with initial

condition x(t) = a. on [g(b), b], (if no such zero exists define Za= + co)

where g(t) and a(t) satisfy (A) and (B) respectively, and fis superlinear while

satisfying (D). Then Zx f + 00 as <x J. 0.

Proof. On [g(b), g"1(ZA], x is nonincreasing. Hence, /(a)5:

f(x(g(s)))=0 for s e [b, ZJ. Integrating, we obtain

*a(s)f(x(g(s))) ds <     *a(s) dsf(x).
0 Jo

Thus a/f(x)= j"^" a(s) ds, and, therefore, Za î + 00 as a J. 0.

This gives us an immediate nonoscillation result.

Corollary 2.2. There is an a0>0 with Zao= + oo if and only if

$t<°a(s)ds< +co.

Assuming/is superlinear and g and/satisfy (A) and (D), respectively,

we now construct a piecewise continuous function a(t) and a corresponding

nontrivial oscillatory solution x of (2). The range of a(t) is {0, 1} so that

a(i)may be thought of as a two position control. Leta(r)=l on [Ojg^Z,)]

where, by Corollary 2.2, Z,< + 00 is the first zero of the solution to

(3) x'(t)+f(x(g(t))) = 0

satisfying the initial condition x(t)=l on [g(0), 0]. Define a(t)=0 on

(g-KZ^g-^g-^Z,))). Then x(i)=a2<0 for all

te[g-i(Zx),g-i(g-i(Zx))] = I2.

Define Z2 to be the first zero on [g~1(g~1(Zx)), + 00) of the solution to (3)

satisfying x(t)=<x2 on I2. Define a(t)=l on [g~1(g~1(Zx)),g~1(Z2)] and

a(t)=0 on (g-\Z2), g-^g-^Zf))). Thus x(t)=x3>0 on interval /3=

\g~1(Z2), g~1(g~1(Z2))]. We may generate the next zero as above. By

induction we can construct a countable set of zeros, using at each step

the fact that Z„< + 00 which follows from Corollary 2.2 for a(t) = I.
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It can be shown that the above solution x(t) exists on [g(0), +00) by

using the strict monotonicity of g to obtain Z„—*-+ 00. In view of this fact

and the manner in which a(t) was constructed it can further be shown that

lim sup      a(s) ds = lim sup [i — g(t)].
i->+°°   Ja(t) (-»+•>

Hence, for any ß e [0, + 00], by appropriate choice of g one can obtain

lim sup      a(s) ds = ß.
í-»oo      Jg(t)

Therefore, the oscillation of the solution x(t) is independent of whether

(C) holds.
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