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PERTURBATIONS  BY  NILPOTENT OPERATORS
ON HILBERT  SPACE

ARLEN BROWN,  CARL PEARCY AND NORBERTO SALINAS1

Abstract. If T is any noncompact, bounded, linear operator

on a separable Hubert space H, then there exists a nilpotent

(bounded, linear) operator N on H such that N+Tis invertible.

1. Introduction. If A is a nonzero operator on a finite dimensional,

complex Hubert space Jf, then it is an exercise in linear algebra (cf. [2])

to find a nilpotent operator N on Jf such that A+N is invertible. The

object of this note is to generalize this result to operators acting on a

Hubert space of dimension X0. Thus, throughout the remainder of this paper,

<?f will denote a separable, infinite dimensional, complex Hubert space,

and JSfpf) will denote the algebra of all (bounded, linear) operators on

=3f. As it turns out, the appropriate generalization of the above-mentioned

fact to operators on Jf provides a novel characterization of the ideal of

compact operators in SPLUP ). Our main result is the following theorem.

Theorem 1.1. An operator A on Jf fails to be compact if and only if

there exists a nilpotent operator N on ¿F such that A+N is invertible.

This theorem may be regarded as a generalization of the finite-dimen-

sional result mentioned above because the ideal of compact operators is

the maximal proper ideal in .Sfpf) and (0) is the maximal proper ideal in

the ring of operators on a finite dimensional space. Thus, each result says

that every operator that is not in the maximal proper ideal has a'nilpotent

perturbation which is invertible.

In §4 the proof of Theorem 1.1 will be given. At this point, we remark

that an immediate consequence of this theorem is the following corollary,

which is due to Dyer, Porcelli, and Rosenfeld [2, Corollary B].

Corollary 1.2. An operator A on ¿C fails to be compact if and only if

there exists B in jSf(Jf) such that the spectrum of A+B is disjoint from the

spectrum of B.
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The proof of the nonobvious half of Theorem 1.1 splits naturally into

two cases, and we shall consider them separately. We denote by (J) the

ideal of all compact operators in Sf(Jt), and by (S) the set of all operators

of the form X+ T where Te (J) and X is a nonzero scalar. Also, (F) will

denote the complement in Sf(Jf ) of (J)kj(S). In §2 we give the proof for

operators in (F), and in §3 we treat operators in (S). In each case, slightly

more is proved than is necessary to prove Theorem 1.1.

2. Nilpotent perturbations of operators in (F). In what follows, A(A)

will denote the spectrum of an operator A.

Theorem 2.1. Let A be an operator belonging to (F). Then there exists

a nilpotent operator N on ^ such that A(A + N) lies outside any prescribed

disk in the plane.

Proof. From [1, Theorem 2] it follows that A is similar to an operator

B acting on Jf ©Jf ®Jf whose matrix has the form

/0     AX2   AX3\

B= lo     A22   A23

Vjí»      ̂ 32      ̂ 33/

where Atj e S?(^), i=\, 2, 3,y'=2, 3. Since the spectrum of an operator

is invariant under similarity, it suffices to prove the theorem for the

operator B. Let p be any positive number, and let 3l he the disk 3¡=

{A:|A|_o} in the complex plane. For each <x>0 we denote by Nx the

nilpotent operator on ¿C ©Jf ©Jf given matricially by

/0   a    0\

N.= l0   0

\0   0    0/

where, of course, a denotes the scalar operator al^. The proof of the

theorem will be completed by showing that there exists a positive number ß

large enough so that A(B+Nß)rM3=0. To this end, for each <x>0, let

Sx denote the invertible operator matrix

(a2'3     0      0^

|   0 a113    0

0        0      I)

A matricial calculation shows that (Sxyi(B+Nx)Sx is the matrix

^0    1    0\        /O     Aja     AX3I^'*\

0   0    1 I + 10 A Ja2'3     Aja

J    0    0/        \0 A32/aV3   AJx2'3/

(1) »2/3
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Since the spectrum of the first matrix in (1) clearly lies on the unit circle,

and since the second matrix tends to zero in the uniform topology as a

goes to infinity, it follows from the upper-semicontinuity of the spectrum

that for a large enough, the spectrum of the sum of the two matrices in

(1) lies in an arbitrarily thin annulus containing the unit circle in its

interior. Thus (by virtue of the factor a2/3 in (1)) ß may be chosen suffi-

ciently large so that A[(Sß)-1(B+Nß)Sß]rl@= 0, and the theorem

follows.

3. Nilpotent perturbations of Fredholm operators. We recall that A is a

Fredholm operator of index zero if and only if the null space of A and the

null space of A* are finite dimensional subspaces of the same dimension

and the range of A is closed. It is well known that if A is a Fredholm

operator of index zero on Jif, then there exists a finite rank operator

F e =Sf pf ) such that A +Fis invertible. The following theorem shows that

the finite rank operator F mentioned in the above statement can be taken

to be nilpotent whenever zero is an isolated point of the spectrum of A.

Theorem 3.1. If A is a Fredholm operator of index zero in JSf(Jf) and

zero is an isolated point of A(A), then there exists a nilpotent, finite rank

operator Non JÍ? such that A+Nis invertible.

Proof. Let E0 and Ex be the spectral idempotents for A associated

with the sets A(v4)\{0} and {0}, respectively, and fory'=0, 1, let êt denote

the range of E¡. If we write Aj=A\ê„ then A(A0)=A(A)\{0} and A(AX) =

{0}. Since A is a Fredholm operator of index zero, it follows that <ax is

finite dimensional [3, Lemma 4.1], and hence that Ax is a nilpotent

operator. It is easy to see that fory'=0, 1, there exist Hubert spaces Jf ¡

and invertible operators Z,r: <5f¡—>S¡ such that the bounded operator

Z:Jf0®Jf x-+2tf defined by Z\jt\=Zj (j=0, 1) is invertible and satisfies

Z-1AZ=B0®BX, where Bj=Zf1AjZj (j=0, 1). In view of the above re-

mark, in order to complete the proof of the theorem, it suffices to find a

nilpotent, finite rank operator

F„    M0\

Mx    Lxl

acting on <?f 0©<?f t such that

¡B0    0\ + /L0   M0\

lo   bJ     \mx  lx!

is invertible. Let V: Jf x—>M?0 be any isometry and define

(2) (L°   M°\ = (~VV*      ~V ).
\MX   Lj       \   V*       l-Bx!

(
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Since ¿ex is finite dimensional, it is clear that the matrix in (2) represents

a finite rank operator. Furthermore, since

l-VV*      -V \2 = IV   OW^i    0W0 1     \IV*   0\

I   V*       1 - Bx)        lo    l/\0    5/1-1    fi1-2/\0     1/

and since Bx is a nilpotent operator, a brief calculation shows that the

matrix in (2) is nilpotent. Finally, from the following elementary lemma,

we conclude that the matrix defined in (2) satisfies all the required con-

ditions.

Lemma 3.2. Let C¡ be an element of Se(JifA,j=0, 1, such that Cx is

invertible, and for j=0, 1, let Dj:^ex_j~^-^'j be a bounded linear trans-

formation. Then the operator matrix

'C0    D0\

\DX    Cj

is invertible if and only if C0—D0CX1DX is an invertible operator on <3^0.

Proof.    Since the operator matrices

'lr.    -D*C?\ /l-      0
and

0        ljr    / \ o    cr1

are invertible, it follows that

is invertible if and only if

Co    D0

Dx    Cx

h^ -Docrn/Co da/i^  o \

\ o      i-    /Id,   cj\ o    C71)
(3)

Dx    Cj \ 0     Cxxl

C0    -D0CX1DX     0

Dx I*

enjoys the same property. On the other hand, an easy matricial compu-

tation shows that the matrix on the right-hand side of (3) is invertible if

and only if the same condition holds for the operator C0 — D0CX1D1.

4. Proof of the main result. Given an operator A on Jif we denote by

AeBS(^4) the essential spectrum of A, i.e., the spectrum of the image of A

under   the   canonical   map  from  Sf(J^)   onto   the  quotient   algebra

se(3^)\(j).
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Proof of Theorem 1.1. If A is a compact operator and N is a nil-

potent operator on Jf, then A(A+N)=> Aesa(A+N) = Aeaa(N) = {0} and

hence A+N is not invertible. Conversely, suppose that A e (F)U(S).

Suppose further, as we may without loss of generality, that A is not in-

vertible (if A is invertible, set N=0). If A e (S), then A is a Fredholm

operator of index zero such that zero is an isolated point of A(A), and the

desired operator TV is provided by Theorem 3.1. Since the case in which

A e (F) is covered by Theorem 2.1, the proof of Theorem 1.1 is complete.
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