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PERFECT TORSION THEORIES

PAUL E.  BLAND

Abstract. The purpose of this paper is to introduce the study

of perfect torsion theories on Mod R and to dualize the concept

of divisible module. A torsion theory on Mod R is called perfect

if every torsion module has a projective cover. It is shown for such

a theory that the class of torsion modules is closed under projective

covers if and only if the class of torsion free modules is closed

under factor modules. In addition, it is shown that this condition

on a perfect torsion theory is equivalent to its idempotent radical

being an epiradical. Codivisible covers of modules are also intro-

duced and we are able to show that any module which has a pro-

jective cover has a codivisible cover. Codivisible covers are then

characterized in terms of the projective cover of the module and the

torsion submodule of the kernel of the minimal epimorphism.

1. Preliminaries. Throughout this paper R will denote an associative

ring with identity and our attention will be confined to the category

Mod R of unital right P-modules. If M and N are modules in Mod R,

then HomR(M, N) will be abbreviated by [M, N].

In [2], Dickson defined a torsion theory on Mod R to be a pair (si, 38)

of classes of modules such that:

(a) sin@={0}.
(b) If A-*A*-+0 is exact with A est, then A* es/.

(c) If 0-+B*->-Bis exact with Be Se, then B* e 38.
(d) For each module M in Mod R there is an exact sequence 0—+A-+

M-»B-+0 with A e si and B e 38.
Modules in si are called torsion and those in 38 torsion free. If the

operators / and r are defined on a class ^ of modules by

/(#) = {Me Mod R\[M,C] = 0 for all C £ #}   and

r(f€) = {M e Mod R\[C,M] = 0 for all C 6 #},

then (si, 38) is a torsion theory if and only if r(si)=38 and ¡(38)=si

[2, p. 229, Proposition 3.3]. Furthermore, if (si, 38) is a torsion theory,
-
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then sé is closed under isomorphic images, factor modules, extensions

and direct sums while 3S is closed under isomorphic images, submodules,

extensions and direct products [2, p. 226, Theorem 2.3]. By saying that a

class <€ of modules is closed under extensions we mean that Me^

whenever N is a submodule of M such that N and MjN are in <€. If (sé, 38)

is a torsion theory such that á? is closed under injective hulls [3], then

(sé, 38) is called hereditary. It is known that (sé, 38) is hereditary if

and only if sé is closed under submodules [2, Theorem 2.9, p. 227]. If

each element of sé has a projective cover, then (sé, 38) will be called

(right) perfect. Clearly, every torsion theory on Mod R is perfect if and

only if R is a (right) perfect ring. (See [1] for a characterization of right

perfect rings.) A projective module F is a projective cover of a module M

if there exists an epimorphism tt:P->-M with coessential kernel. P(M)

will be reserved to denote the projective cover of a module M whenever

such exists. A submodule AT of M is said to be coessential in M if N=M

whenever N is a submodule of M such that K+N=M. We will call any

epimorphism with a coessential kernel minimal. If (s¡/, 38) is a perfect

torsion theory such that si is closed under projective covers, then (sé, 38)

will be referred to as cohereditary.

An object functor F:Mod R->-Mod R is said to be a radical if F(Af)£

M,f:M-+N implies that/(F(Af))£ T(N) and T(M¡T(M))=0. Iff:M->-N
is any epimorphism, then a radical T, such that f(T(M)) = T(N), is an

epiradical. A radical T, such that T(T(M)) = T(M) for all modules M,

is called idempotent. It is well known that (sé, 3$) is a torsion theory on

Mod R if and only if there exists an idempotent radical T on Mod R

such that

sé = {Ae Mod R \ T(A) = A}   and   38 = {Be Mod R \ T(B) = 0}

[5, p. 2, Proposition 0.1]. Furthermore, this correspondence is one-to-one

[7, p. 6, Proposition 2.3]. If (sé, 38) is a torsion theory with idempotent

radical T, then (sé, 38) is hereditary if and only if F is a left exact functor

[7, Proposition 2.6, p. 8]. (In this context if f:M-+N, then T(f) is the

restriction off to T(M).)

2. Cohereditary torsion theories.

Theorem 2.1. If (sé, 38) is a perfect torsion theory, then (sé, 38) is

cohereditary if and only if 38 is closed under factor modules.

Proof. Let A e sé and suppose that 38 is closed under factor modules.

If B is any member of 38 and fe [P(A), B], set g=r¡ of where ??:/?->-

BjfiK) is the canonical epimorphism and K is the kernel of the minimal

epimorphism tt:P(A)-+A. Since g(K)=0, we have an induced mapping
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g* : A-+B¡f(K) which must be the zero map since B/f(K) e 38. Con-

sequently, if xeP(A), then 0=g* °n(x)=g(x)=f(x)+f(K) and so

f(x) ef(K). Hence if z=x—k where k e K is such that f(k)=f(x), then

z e kerf Thus x e ker/+ATand so P(A)=ker f+K. Now K is coessential

in P(A) and therefore P(A)=kerf. Hence P(A) e si and so (si, 38) is

cohereditary.

The converse follows easily by using the projectivity of projective covers.

The following lemma will be useful.

Lemma 2.2. Let ^ be a nonempty class of modules each of which has a

projective cover. IfS(C, M) = 2f(P(Q) (fe [P(C), M])for any module M
and any Ce<ë, then T(M) = ^S(C, M)(Ce<ë) defines an idempotent

epiradical on Mod P.

Proof. The fact that T is an idempotent radical follows in a straight-

forward fashion from the definition of T. Now suppose that g:M^-N

is an epimorphism and let y e T(N). If y=2/(z) where/e [P(C), N] for

some Ce^, then for each/there is a mapping h e [P(C), M] such that

f=goh. Thus if x=2«(z), then xeT(M) and g(x) = %g ° «00 =
2/(z) = y. Hence g(T(M)) = T(N) and so T is an epiradical.

The following theorem establishes a one-to-one correspondence

between perfect torsion theories which are cohereditary and idempotent

epiradicals. We need the following notation. If if is a nonempty class of

modules, let 1*(<£)={M e Mod R\P(M) exists and [P(M), C]=0 for all

Ce^}.

Theorem 2.3. If si and 3§ are nonempty classes of modules, then the

following are equivalent :

(a) (si, 38) is a cohereditary torsion theory.

(b) r(si)=@andl*(38)=l(38)=si.

(c) There exists an idempotent epiradical T on Mod R such that si=

{A 6 Mod R\T(A)=A} and 38={B e Mod R[T(B)=0}. Furthermore, each

element of si has a projective cover.

Proof. (b)=>(c). Since /* (38)=si each element of si has a projective

cover. Hence let T be the idempotent epiradical of Lemma 2.2 where the

class m is replaced by the class si. Now suppose that A* = T(A*). Then

for each a e A* we have a=^fx(x) where each/,, e [P(A), A*] for some

Ae si. Suppose next that we choose our notation so that x e P(AX).

Then if S(Aa)=% ®P(AX), then the P-linear mapping /a:S04o)-*

•4*:2 ©y—*lLfx(y) 's such that/a(2 ®x)=a. Now si is closed under

direct sums and it follows from I* (38) = si that si is closed under pro-

jective covers. Hence S(AA e si and so 2 0 S(Aa) (a e A*) is a member

of si. Thus the P-linear mapping ^^H*^©^/.^) is
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an epimorphism. Therefore A* is an epimorph of an element in sé and so

A* ese. Hence {A e Mod R\T(A)=A} Ç sé. Conversely, if A* ese,

then A*=S(A*,A*)<=2S(A,A*)=T(A*). Consequently, T(A*)=A*
and so séç {A e Mod R\T(A)=A}.

There is no difficulty in showing that 38={BeMod R\T(B)=0}.
(c)=>(a). It is immediate that (c) implies that (sé, 38) is a perfect torsion

theory. Hence it remains only to show that sé is closed under projective

covers. Let Ae sé and suppose that K is the kernel of the minimal

epimorphism tt:P(A)-*A. Since T is an epiradical, then the restriction

p of it to T(P(A)) is an epimorphism. Now suppose that/is the completing

homomorphism for the diagram

P(A)

V
T(P(A)) -^*A —> 0

If x eP(A) and k=x—f(x), then Tr(k)=7r(x)—p of(x)=0 and so k e K.

Hence x e T(P(A))+K and therefore P(A)=T(P(A))+K. But K is coessen-

tial in P(A) and so T(P(A))=P(A).

(a)=>(b) is an easy exercise.

Corollary 2.4. If (sé, 38) is a perfect torsion theory with idempotent

radical T, then (sé, 38) is cohereditary if and only ifTis an epiradical.

It is now immediate that if (sé, 38) is • a perfect torsion theory with

idempotent radical T, then (sé, 38) is a hereditary, cohereditary torsion

theory if and only if T is an exact functor.

3. Codivisible modules. The following definition dualizes the concept

of a divisible module given by Lambek in [5, p. 8]. A module M is codi-

visible with respect to a torsion theory if every diagram of the form

M

can be completed where ker/is torsion free. The usual argument now

shows that a direct sum of modules is codivisible if and only if each factor

is codivisible. Any homomorphism with torsion free kernel will be called

free. In- the discussion which follows we confine our attention to a given

torsion theory with idempotent radical T.

Lemma 3.1.   Iff:L—>-M is a minimal, free epimorphism, then f is an

isomorphism whenever M is codivisible.
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Proof.   If M is codivisible, then the diagram

M

I"
L-^M—>0

can be completed by a homomorphism g. Hence L = ker/©Img and so

ker/=0 since ker/is coessential in L.

A codivisible module C(M) is said to be a codivisible cover of a module

M, if there exists a minimal, free epimorphism p:C(M)^>-M. C(M) will

denote such a cover whenever it can be shown to exist.

Theorem 3.2. The codivisible cover (when it exists) is unique up to an

isomorphism.

Proof. Let p : C(M)-*M and p* : C(M)*-*M be codivisible covers of

M. Then the diagram

C(M)

I"
C(M)*Ï-*M—»-0

can be completed with a homomorphism g since p* is free. Hence it

follows that C(M)* = ker p*+Im g. Thus g is an epimorphism since

ker p* is coessential in C(M)*. Now kergs ker p and so it follows that g

is a minimal, free epimorphism. Consequently, by Lemma 3.1, g must be

an isomorphism.

We will now show that codivisible covers exist when projective covers

exist.

Theorem 3.3. If n:P(M)—>-M is a projective cover of M, then

p:P(M)IT(ker n)-*M is a codivisible cover of M where p is the mapping

induced by n.

Proof. Since ker//^ker7r/P(ker7r), then ker p is torsion free. Note

also that ker p is coessential since the epimorph of a coessential module

is coessential [6, Hilfssatz 3.1, p. 189]. Now consider the diagram

P(M)

nat

P(M)/P(ker ii)

Y
-> N->0
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where/is free and g is the completing homomorphism given by the pro-

jectivity of P(M). Since g : F(ker 7r)->-ker/ we see that g(F(ker7r))£

F(ker/)=0. Hence there is an induced mapping g*:P(M)/T(ker -n)-+L

such that/o g*=h. Thus P(M)/T(keT n) is codivisible and this completes

the proof.

The above theorem shows that every module in Mod R has a codi-

visible cover when R is a perfect ring. It would be interesting to know

under what conditions the universal existence of codivisible covers implies

that of projective covers.

Theorem 3.4. If tt:P(M)-*-M is a projective cover of Af, then M is

codivisible if and only //ker 7r is torsion.

Proof. Let p : C(M)-+M be a codivisible cover of M. If M is codi-

visible then p must be an isomorphism because of Lemma 3.1. But

ker/i^ker 7r/F(ker 7t) and so F(ker 7r)=ker 7r. Conversely, if kerjr is

torsion, then M is codivisible by Theorem 3.3.

Theorem 3.5. If p:C(M)-+M is a codivisible cover of M, then C(M)

is torsionfree whenever M is torsionfree.

Proof. If M is torsionfree, then 0->-ker p->-C(M)->-M-+0 is exact with

both ker p and M torsionfree. Hence C(M) is torsionfree since the class of

torsionfree modules is closed under extensions.

Note, for a cohereditary torsion theory, that a right A-module M has

a codivisible cover which is torsion if and only if M is torsion.

4. Examples. Let ^ be a class of modules in Mod R closed under

taking submodules, factor modules, extensions, direct products and

direct sums. Then ^ is a torsion class for the torsion theory (fé', rifé!))

and a torsionfree class for the torsion theory (life), %>). Such a class of

modules is called a TTF (torsion-torsionfree) class.

"We now give two examples of cohereditary torsion theories. A more

detailed discussion of the results we have used concerning TTF classes

can be found in [4].

(i) Let R be a ring with idempotent ideal /, then (£={M\MI=0} is a

TTF class. Thus if R is right perfect, then (l(f£), <<£) is a cohereditary

torsion theory.

(ii) If R is a left perfect ring, then <£={M\[M, E(R)]=0}, E(R) the
injective hull of R, is a TTF class. Hence if R is also right perfect, then

(l(fë), <ë) is a cohereditary torsion theory.
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