THE DENSITY CHARACTER OF FUNCTION SPACES

N. NOBLE

ABSTRACT. For topologies between the pointwise topology and the compact-open topology, the density character of $C(X)$ (and, for certain spaces Z, $C(X,Z)$) is described in terms of a cardinal invariant of X. The Hewitt-Pondiczery theorem on the density character of product spaces follows as a corollary.

1. Description. Except in Corollary 2, all hypothesized spaces are assumed to be completely regular Hausdorff. The set of continuous functions from X to Z is denoted by $C(X,Z)$ or, when $Z = R$, by $C(X)$. The density character, δX, of a space X is the least cardinality of a dense subset of X and the weight, wX, of X is the least cardinality of an open basis of X. We define the weak weight, wwX, of X to be the least of the cardinals wY for a continuous one-to-one image of X.

THEOREM 1. Let X be any infinite space and let $C(X)$ have any topology between the pointwise topology and the compact-open topology. Then $\delta C(X) = wwX$.

All proofs will be given in the next section. Our remaining results allow Theorem 1 to be applied to yield information about $\delta C(X, Z)$ for suitable spaces Z.

LEMMA. Let $C(X, Z)$ and $C(X, Z^*)$ both have either the topology of uniform convergence on members of some fixed cover of X or the set-open topology generated by such a cover. If Z is a retract of Z^* then $\delta C(X, Z) \leq \delta C(X, Z^*)$.

PROPOSITION. For any topologies between the pointwise topology and the compact-open topology:

(i) For any space Z, $\delta Z \leq \delta C(X, Z)$.

(ii) If Z contains a nondegenerate arc, then $\delta C(X) \leq \delta C(X, Z)$.

(iii) If for each finite subset F of X there exists a function f in $C(X, Z)$ such that F and $f(F)$ have the same cardinality, then $\delta C(X) \leq \delta C(X, Z) \cdot \delta C(Z)$.

Received by the editors February 26, 1971.

Key words and phrases. Density character, separable spaces, function spaces.
Theorem 2. Suppose \(Z \) contains more than one point and is a retract of a convex subset of some locally convex linear space. For any topologies between the pointwise topology and the compact-open topology, \(\delta C(X, Z) = \delta C(X) \cdot \delta Z \).

Corollary 1. For \(Z \) as in Theorem 2 and any topology between the pointwise topology and the compact-open topology, \(C(X, Z) \) is separable if and only if \(Z \) is separable and some continuous one-to-one image of \(X \) is separable metrizable.

Under the same hypotheses on a separable space \(Z \), Vidossich [6] shows that \(C(X, Z) \) is separable if and only if \(X \) is submetrizable (has a continuous one-to-one metrizable image) with \(\delta X \leq c \), which is equivalent to being submetrizable and of cardinality less than or equal to \(c \). Combined with Corollary 1 this yields:

Corollary 2. On a set of cardinality less than or equal to \(c \) each metrizable topology contains a separable metrizable topology.

Theorem 3. For the topology of pointwise convergence, if \(Z \) is arcwise connected or if \(X \) is a P-space then \(\delta C(X, Z) \leq \delta C(X) \cdot \delta Z \).

Corollary 3 (Hewitt [2], Pondiczery [3]). Let \(n \) be an infinite cardinal. With no separation axioms assumed, let \(X = \prod_{a \in A} X_a \) where each \(X_a \) has \(\delta X_a \leq n \). If \(\operatorname{card} A \leq 2^n \), then \(\delta X \leq n \).

Turning to other topologies on \(C(X) \) we note that the compact-open topology arises in Theorem 1 only because we need the Stone-Weierstrass Theorem (that a subalgebra is dense if it contains the constants and separates points). When dealing with a subalgebra generated by a set of cardinality \(n \) which separates points, compactness can be weakened to weak-\(n \)-\(\mathcal{K}_0 \)-compactness (each \(n \)-fold open cover has a finite subcollection whose union is dense—such spaces are studied, for example, in [4]) so if \(\omega \omega X = n \), then in the set-open topology generated by all weakly-\(n \)-\(\mathcal{K}_0 \)-compact subsets of \(X \), \(\delta C(X) \leq n \). In case \(\omega \omega X = \mathfrak{K}_0 \), an even stronger statement holds: \(C(X) \) is separable in the set-open topology generated by all relatively pseudocompact subsets of \(X \). (A set \(S \subseteq X \) is relatively pseudocompact if each function in \(C(X) \) is bounded on \(S \); weak-\(\mathcal{K}_0 \)-\(\mathcal{K}_0 \)-compactness is equivalent to pseudocompactness.)

Of course the most interesting topology on \(C(X) \) larger than the compact-open topology is the topology of uniform convergence, and for this topology it is known that \(\delta C(X) = \omega \beta X \): That \(\delta C^*(X) = \omega \beta X \) is established by Smirnov in [5] by a proof similar to the proof of Theorem 1 and the more difficult result \(\delta C^*(X) = \delta C(X) \) is shown by Comfort and Hager in [1].
Since the largest set-open topology on $C(X)$ is the topology of uniform convergence if (and only if) X is pseudocompact, it follows by the Comfort-Hager-Smirnov Theorem, the comments above, and the fact that βX is separable only if X is compact, that if X is compact separable metric, no strictly larger topology on X is pseudocompact.

2. The proofs.

Proof of Theorem 1. We first show that $\delta C(X) \leq \omega \omega X$; since larger topologies have "larger" density characters, it suffices to consider the case where $C(X)$ has the compact-open topology. Let \mathfrak{B} be a base for some topology contained in the topology of X with $\text{card} (\mathfrak{B}) = \omega \omega X$ and form a set of functions $D \subseteq C(X, I)$ by choosing, for each pair (U, V) in $\mathfrak{B} \times \mathfrak{B}$ with $U \subseteq V$, a function which maps U to 0 and $X \setminus V$ to 1, if such a function exists. Clearly D separates points of X, so by the Stone-Weierstrass Theorem (for example, [7, problem 44B]) the algebra generated by D and the constant functions is dense in $C(X)$. Hence the set, D^*, of all finite linear combinations, with rational coefficients, of members of D or rational constant functions is dense in $C(X)$. Since $\text{card} D^* = \text{card} D = \omega \omega X$, this shows that $\delta C(X) \leq \omega \omega X$.

For the remaining relation, $\omega \omega X \leq \delta C(X)$, it suffices to consider $C(X)$ in the pointwise topology. Let $D \subseteq C(X)$ be dense with $\text{card} (D) = \delta C(X)$ and let $e: X \to \mathbb{R}^D$ be the embedding map, $e(x)_d = d(x)$. Since D is dense, it separates points, so e is one-to-one. Since each subspace of \mathbb{R}^D has weight $\leq \text{card} D = \delta C(X)$, it follows that $\omega \omega X \leq \delta C(X)$.

Proof of the lemma. For $D \subseteq C(X, Z^*)$ dense and $r: Z^* \to Z$ a retraction, $\{r \circ d: d \in D\}$ is dense in $C(X, Z)$.

Proof of the proposition. (i) Identifying Z with the constant functions and choosing $z \in Z$, the function which carries $/ \to f(z)$ is a retraction of $C(X, Z)$ to Z. Thus, by the lemma, $\delta Z \leq \delta C(X, Z)$.

(ii) By the lemma $\delta C(X, I) \leq \delta C(X, Z)$ and since

$$C^*(X) = \bigcup_n C(X, [-n, n])$$

is dense in $C(X)$, $\delta C(X) = \delta C(X, I)$. Therefore $\delta C(X) \leq \delta C(X, Z)$.

(iii) To see that $\delta C(X) \leq \delta C(X, Z) \cdot \delta C(Z)$ it suffices to consider the pointwise topologies, since by Theorem 1, $\delta C(X)$ does not change, and $\delta C(X, Z)$ can only be larger. Let D_1 and D_2 be dense in $C(X, Z)$ and $C(Z)$ respectively with $\text{card} D_1 = \delta C(X, Z)$, $\text{card} D_2 = \delta C(Z)$, and set $D = \{g \circ f: f \in D_1, g \in D_2\}$. We show that D is dense in $C(X)$. Given distinct points x_1, \cdots, x_n in X and open subsets U_1, \cdots, U_n of R with $\cap_{i=1}^n N(x_i, U_i) \neq \emptyset$ (where $N(x, U) = \{f: f(x) \in U\}$), there exists a function h in $C(X, Z)$ such that the points $h(x_i)$ are all distinct. Choosing disjoint open neighborhoods V_i of $h(x_i)$, $\cap_{i=1}^n N(x_i, V_i)$ is thus a nonempty open.
set, so it contains a function f in D_1. Since $\bigcap_{i=1}^n N(x_i, U_i) \neq \varnothing$, it contains a function which maps the points x_i to distinct reals and hence, shrinking the U_i if necessary, we may suppose that they are all disjoint. Thus $\bigcap_{i=1}^n N(f(x_i), U_i)$ is not empty, so it contains a function g in D_2. But now $g \cdot f$ is in $\bigcap_{i=1}^n N(x_i, U_i)$, as desired.

Proof of Theorem 2. Since Z must contain a nondegenerate arc, the relation $\delta C(X, Z) \supseteq \delta C(X) \cdot \delta Z$ follows from the first two parts of the proposition. For the reverse inequality it suffices to consider the case where Z is a convex subset of a locally convex linear space Z^* which contains the origin and where $C(X, Z)$ and $C(X)$ bear the compact-open topologies. Let D' be a dense subset of $C(X, I)$ of cardinality $\delta C(X)$ (that $\delta C(X, I) = \delta C(X)$ follows from the lemma and the second part of the proposition) and let D'' be the set of convex combinations, with rational coefficients, of members of D'. For g and g' in D'' and for r and s rational with $0 \leq r < s \leq 1$ choose $h(g, g', r, s)$ in $C(X, I)$ such that for $h = h(g, g', r, s)$, $h(x) \leq g'(x)$ for all x in X, $h(x) = g'(x)$ if x is in $g^{-1}([0, r])$, and $h(x) = 0$ if x is in $g^{-1}([s, 1])$. Finally let D_1 be the set of all functions $h(g, g', r, s)$ so chosen and note that the cardinality of D_1 is $\delta C(X)$. Now let D_2 be a dense subset of Z of cardinality δZ and, identifying z in D_2 with the constant function on X whose value is z, set

$$D = \left\{ \sum_{i=1}^m f_i z_i : f_i \in D_1, z_i \in D_2 \right\}.$$

Since the cardinality of D is $\delta C(X) \cdot \delta Z$, it suffices to show that $D \cap C(X, Z)$ is dense in $C(X, Z)$.

Let K be a compact subset of X, let ρ be a continuous seminorm for Z^*, let ϵ be a positive rational less than 1 and choose f in $C(X, Z)$. Let $S = \{ z \in Z : \rho(z) < \epsilon/2 \}$, cover K with the sets $U(x) = f^{-1}(f(x) + S)$ for $f(x)$ in D_2 and let $U(x_1), \ldots, U(x_n)$ be a finite subcover. Let Φ_1, \ldots, Φ_n be a partition of unity subordinate to this cover, let M be a positive integer greater than each of the numbers $2n \rho(f(x_i))$, $1 \leq i \leq n$, and choose functions f_i in D' such that for each x in K, $\Phi_i(x) - \epsilon/M < f_i(x) < \Phi_i(x) - \epsilon/2M$. Set $g = (1/n) \sum_{i=1}^n f_i$, $r = 1/n - \epsilon/2M$ and $s = 1/n$ and let $h_i = h(g, f_i, r, s)$, $1 \leq i \leq n$. Note that for x in K,

$$g(x) = \left(\frac{1}{n} \right) \left(\sum_{i=1}^n f_i(x) \right) \leq \left(\frac{1}{n} \right) \left(\sum_{i=1}^n \Phi_i(x) - \frac{n \epsilon}{2M} \right) = r,$$

so $h_i(x) = f_i(x)$. Furthermore, for any x, $\sum_{i=1}^n h_i(x) \leq \sum_{i=1}^n f_i(x)$ and $\sum_{i=1}^n h_i(x) = 0$ if $\sum_{i=1}^n f_i(x) \geq 1$, so $\sum_{i=1}^n h_i(x) \leq 1$. Therefore the function $h = \sum_{i=1}^n h_i f(x_i)$ is in $D \cap C(X, Z)$. We complete the proof by showing that
\[\rho(h(x) - f(x)) < \varepsilon \text{ for } x \text{ in } K. \] For such \(x, \)
\[
\rho(h(x) - f(x)) = \rho \left(\sum_{i=1}^{n} h_i(x) f(x_i) - \sum_{i=1}^{n} \Phi_i(x) f(x) \right)
\]
\[
= \rho \left(\sum_{i=1}^{n} (h_i(x) - \Phi_i(x)) f(x_i) + \sum_{i=1}^{n} \Phi_i(x) f(x_i) - f(x) \right)
\]
\[
\leq \rho \left(\sum_{i=1}^{n} |f(x_i)| |\Phi_i(x) - f(x_i)| + \left(\sum_{i=1}^{n} \Phi_i(x) \right) (\varepsilon/2) \right).
\]
\[
\leq \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]

Proof of Theorem 3. We first suppose that \(Z \) is arcwise connected. Let \(D' \) be a dense subset of \(Z \) of cardinality \(\delta Z \) and for each finite subset \(F \) of \(D' \) choose an arcwise connected subspace \(X_F \) of \(Z \) which contains \(F \), is the union of finitely many arcs, and which contains no closed loops. (To construct such a subspace, suppose inductively that \(Y_k \) has been constructed so as to satisfy these conditions and contain \(k \) points of \(F \), let \(z \) be a point in \(F \setminus Y_k \), let \(f \) be an arc with \(f(0) \) in \(Y \) and \(f(1) = z \) and let \(r \) be the largest number such that \(f(r) \) is in \(Y_k \). The space \(Y_{k+1} = Y_k \cup f([r, 1]) \) has the required properties and contains \(k+1 \) points of \(F \).) The space \(X_F \) is a retract of \(R^2 \), so \(\delta C(X, X_F) \subseteq \delta C(X) \) and hence \(C(X, X_F) \) contains a dense subset \(D_F \) of cardinality at most \(\delta C(X) \). Set \(D = \bigcup D_F \) is a finite subset of \(D' \) and note that the cardinality of \(D \) is at most \(\delta C(X) \cdot \delta Z \).

Observe that each \(X_F \) can be expressed as \(h_F(I) \) for some continuous function \(h_F \). Hence if \(F' \subseteq X \) is finite and \(f:F' \rightarrow F' \subseteq D' \) is given, then \(f \) has a continuous extension \(f^*:X \rightarrow X_F \). (Indeed, for \(g:F' \rightarrow I \) with each \(g(x) \) in \(h_F^{-1}(f(x)) \) and \(g^*:X \rightarrow I \) a continuous extension of \(g \), the function \(f^* = h_F \circ g^* \) is such an extension.) It is now easy to show that \(D \) is dense.

Given distinct points \(x_1, \ldots, x_n \) of \(X \) and nonempty open subsets \(U_1, \ldots, U_n \) of \(Z \), choose points \(z_i \) in \(F' \cap U_i \), set \(F = \{z_1, \ldots, z_n\} \), let \(f \) be the function which carries \(x_i \) to \(z_i \) and let \(f^*:X \rightarrow X_F \) be a continuous extension of \(f \). Then \(f^* \) is in \(\bigcap_{i=1}^{n} N(x_i, U_i) \), so \(\bigcap_{i=1}^{n} N(x_i, U_i) \) is not empty. It follows that \(D_F \), and hence \(D \), meets \(\bigcap_{i=1}^{n} N(x_i, U_i) \), as desired.

Now suppose that \(X \) is a \(P \)-space. Let \(Z^* \) be the quotient of \(I \times Z \) formed by identifying \(\{1\} \times Z \) to a point \(v \), choose a point \(z_0 \) in \(Z \) and let \(q:Z^* \rightarrow Z \) be the map which carries \(v \) to \(z_0 \) and points \((r, z) \) to \(z \). Since \(Z^* \) is arcwise connected, \(C(X, Z^*) \) contains a dense subset \(D' \) of cardinality at most \(\delta C(X) \cdot \delta Z \). Note that if \(f:X \rightarrow Z^* \) is continuous then \(q \circ f \) is continuous since \(f^{-1}(v) \), being a closed \(G_\delta \), is both closed and open. Thus \(D = q \circ f : f \in D' \) is a subset of \(C(X, Z) \) of cardinality at most \(\delta C(X) \cdot \delta Z \). Since \(D \) is clearly dense in the pointwise topology, the proof is complete.
Proof of Corollary 3. Let $X = \prod_{a \in A} X_a$ where $|A| = 2^n$ and where, we may suppose, A is discrete and each X_a contains a dense subset D_a of cardinality n. Let $Z_a = Z$, the discrete space of cardinality n, and let D' be a dense subset of $\prod_{a \in A} Z_a = C(A, Z)$ of cardinality at most $\delta C(A) \cdot \delta Z = w \omega A \cdot \delta Z = n \cdot n = n$. (Since A is discrete, $w \omega A$ is the least cardinal m such that $|A| \leq \text{card } R^m = 2^m$, so $w \omega A = n$.) Let $i_a : Z_a \rightarrow D_a$ be one-to-one onto and set $D = (\prod_{a \in A} i_a)(D')$. Since the projection of D' onto any finite subproduct must be onto, it is clear that D is dense, as desired.

References

5. Yu. M. Smirnov, On the weight of the ring of bounded continuous functions over a normal space, Mat. Sb. 30(72) (1952), 213–218. (Russian) MR 14, 70.

Canary Road, Westlake, Oregon 97493