A COUNTEREXAMPLE IN THE CLASSIFICATION OF OPEN RIEMANN SURFACES

YOUNG K. KWON

ABSTRACT. An HD-function (harmonic and Dirichlet-finite) ω on a Riemann surface R is called HD-minimal if $\omega>0$ and every HD-function ω' with $0 \leq \omega' \leq \omega$ reduces to a constant multiple of ω. An HD^*-function is the limit of a decreasing sequence of positive HD-functions and HD^*-minimality is defined as in HD-functions. The purpose of the present note is to answer in the affirmative the open question: Does there exist a Riemann surface which carries an HD^*-minimal function but no HD-minimal functions?

An HD-function (harmonic and Dirichlet-finite) ω on a Riemann surface R is called HD-minimal if ω is positive and every HD-function ω' with $0 < \omega' \leq \omega$ reduces to a constant multiple of ω on R. Let $\{\omega_n\}$ be a decreasing sequence of positive HD-functions on R. Then its limit is harmonic on R, and called an HD^*-function on R. HD^*-minimality can be defined as for HD-minimal functions. Denote by U_{HD} (resp. U_{HD^*}) the class of open Riemann surfaces on which an HD-minimal (resp. HD^*-minimal) function exists (Constantinescu and Cornea [2]).

It is well known (Nakai [5], see also Sario-Nakai [7, p. 186]) that the inclusion $U_{HD} \subset U_{HD^*}$ holds. The purpose of the present paper is to show that the inclusion is strict. For Riemannian manifolds of dim ≥ 3 its strictness was established in Kwon [4]. For the sake of completeness we shall also give a somewhat simplified proof.

It should be noted that our reasoning is suggested by ingenious examples of Toki ([8], [9]); see also Sario [6]. The author is very grateful to the referee for his helpful suggestions.

1. First we demonstrate a hyperbolic Riemann surface which does not carry nonconstant positive harmonic functions (Toki [9]). For the sake of simplicity we follow the construction and the notation in Ahlfors and Sario [1, pp. 256-261].

Our surface will be obtained from the unit disk U: $|z|<1$ by identifying,
pairwise or cyclically, edges of infinitely many radial slits. For a slit
\(S = \{ re^{i\theta} | 0 < a \leq r \leq b < 1 \} \), set
\(S^+ = \{ re^{i(\theta + \pi/2)} | a \leq r \leq b \} \) and
\(S^- = \{ re^{i(\theta - \pi/2)} | a \leq r \leq b \} \). Two radial slits \(S_1 \) and \(S_2 \) are identified pairwise if \(S_1^+ \) is connected
with \(S_2^- \) and \(S_1^- \) with \(S_2^+ \). The radial slits \(S_1, S_2, \cdots, S_n \) are identified
cyclically if \(S_1^+ \) is connected with \(S_2^- \), \(S_2^+ \) with \(S_3^- \), etc., and finally \(S_n^+ \) with
\(S_1^- \). Here we understand that all the slits extend between two concentric
circles.

For a pair \((h, k)\) of positive integers \(h, k \), set \(\mu = (2h - 1)2^{k-1} \). With each \(\mu \)
we associate \(2^{k+5h} \) radial slits, equally spaced and one being on the positive
real axis, such that their end points lie on \(|z| = r_{4h-2} \) and \(|z| = r_{4h-1} \), where
\(\log r_{\mu} = -2^{-\mu} \) for all \(\mu \geq 1 \). A slit associated with \(\mu = \mu(h, k) \) will be called
of rank \(\mu \) and type \(k \). For each \(k \geq 1 \) denote by \(S_{ik} \) the sectors:
\(2\pi i \cdot 2^{-k} \leq \theta \leq 2\pi (i+1) \cdot 2^{-k}, 0 \leq i < 2^k \). The slits of type \(k \) on the rays \(\theta = 2\pi i \cdot 2^{-k} \)
will be identified cyclically. The remaining slits of the same type are
identified pairwise within each sector \(S_{ik} \), symmetrically with respect to
its bisecting ray. Let \(\bar{U} \) be the resulting Riemann surface.

Lemma 1. The Riemann surface \(\bar{U} \) is hyperbolic, but every positive harmonic function on \(\bar{U} \) reduces to a constant.

For a proof we refer the reader to Ahlfors and Sario [1, pp. 256–261].

2. Denote by \(U_0 \) the Riemann surface obtained from \(\bar{U} \) by deleting
all the radial slits

\[
\sum_{hk} = \{ re^{i\theta} | -2^{-4h} \leq \log r \leq -2^{-4h-1}, \theta = 2\pi v \cdot 2^{4h} \}
\]

for \(1 \leq v \leq 2^{4h} \). Let \(\{ U_0(l) \}_{l=1}^{2^{4h}} \) be a sequence of duplicates of \(U_0 \). For each
fixed \(k \geq 1 \) and subsequently for \(j \geq 0 \) and \(1 \leq l \leq 2^{k-1} \), join \(U_0(l+2^j) \),
crosswise along all the slits \(\sum_k (h \geq 1) \), with \(U_0(l+2^{k-1}+2^j) \) (cf. Sario
[6]). The resulting Riemann surface \(R \) is an infinitely sheeted covering
surface of \(\bar{U} \). Let \(\pi: R \rightarrow \bar{U} \) be the natural projection.

Lemma 2. The Riemann surface \(R \) carries no nonconstant bounded harmonic functions. Furthermore every bounded harmonic function \(u \) on the subregion

\[
G = \{ x \in R | |\pi(x)| > r_1 \}
\]

takes the same value on \(\pi^{-1}(z) \) for each \(z \in \bar{U} \) whenever it continuously
vanishes on the relative boundary

\[
\partial G = \{ x \in R | |\pi(x)| = r_1 \},
\]

where \(\log r_1 = -2^{-1} \).

For the proof the reader is referred to Sario-Nakai [7, pp. 178–181].
3. For each integer \(l \geq 1 \), consider the subset of \(R \):
\[
R_l = \left[\bigcup_{j=1}^{l-1} G_j \right] \cup \left[\bigcup_{j=1}^\infty \mathcal{U}_0(j) \right]
\]
where \(G_j = \{ x \in \mathcal{U}_0(j) : |\pi(x)| > r_j \} \). It is obvious that \(G = \bigcup_{j=1}^\infty G_j \) and the Riemann surface \(G \) is an infinitely sheeted covering surface of the "annulus" \(\{ z \in \bar{U} : |z| > r_j \} \).

We are now ready to state our main result (cf. Kwon [4]):

Theorem 1. The Riemann surface \(G \) carries a unique (up to constant factors) \(HD^\infty \)-minimal function but no \(HD \)-minimal functions. Thus the inclusion \(U_{HD} \subset U_{HD^\infty} \) is strict for Riemann surfaces.

The proof will be given in §§4–5. For convenience we shall follow the notation and terminology in Sario-Nakai [7]. All results needed concerning the Royden and Wiener compactifications can be found in Sario-Nakai [7, Chapters 3 and 4].

4. For each \(m \geq 1 \) choose \(u_m \in HBD(R_m) \), the class of bounded Dirichlet-finite harmonic functions on \(R_m \), such that \(0 \leq u_m \leq 1 \) on \(R \), \(u_m \equiv 0 \) on \(\bigcup_{j=1}^{m-1} [\mathcal{U}_0(j) - G_j] \), and \(u_m \equiv 1 \) on the Royden harmonic boundary of \(R \). In view of the fact that \(R \) is hyperbolic and carries no nonconstant bounded harmonic functions, the Wiener harmonic boundary \(\Delta_W \) and the Royden harmonic boundary \(\Delta_M \) of \(R \) consist of single points. Therefore the maximum principle yields
\[
u_m(x) \geq 1 - (\log |\pi(x)|) / \log r_1
\]
on \(G \). Clearly \(u_m \geq u_{m+1} \) and therefore the sequence \(\{u_m\} \) converges, uniformly on compact subsets of \(G \), to an \(HD^\infty \)-function \(u \) on \(G \). It is obvious that \(0 < u < 1 \) on \(G \) and \(u \equiv 0 \) on \(R - G \).

We claim that the function \(u \) is \(HD^\infty \)-minimal on \(G \). In fact let \(v \in HD^\infty(G) \), the class of \(HD^\infty \)-functions on \(G \), satisfy \(0 < v \leq u \) on \(G \). Since
\[
0 \leq \limsup_{x \to y} v(x) \leq \limsup_{x \to y} u(x) = 0
\]
for every \(y \in \partial G \), the function \(v \) can also be continuously extendable to \(R \) with \(v|R - G \equiv 0 \). Again by the maximum principle we have \(v = xu \) on \(G \), where \(x = \lim_{x \to \Delta_M} v(x) \) the limit being taken in the Wiener compactification of \(R \).

5. Suppose that the function \(u \) is \(HD \)-minimal on \(G \). Then \(u \) must have a finite Dirichlet integral over \(G \). But \(u \) has a continuous extension to \(G \cup \partial G \) with \(u|\partial G \equiv 0 \). Therefore \(u \) must attain the same value at all the points in \(G \) which lie over the same point in \(\bar{U} \), a contradiction.
Finally it remains to show that every H^D-minimal function on G is a constant multiple of u. Let ω be another H^D-minimal function on G. Choose a point $q \in \Delta_{M, G}$, the Royden harmonic boundary of G, such that q has a positive harmonic measure and $\limsup_{p \to q} \omega(x) = 0$ for almost all $q' \in \Delta_{M, G} - \{q\}$ relative to a harmonic measure μ for G. Then ω has an integral representation in the form:

$$\omega(x) = \int_{\Delta_{M, G}} P(x, y)\bar{\omega}(y)\,d\mu(y)$$

on G, where $P(x, y)$ is the harmonic kernel and $\bar{\omega}(y) = \limsup_{p \to q} \omega(y)$ for $y \in \Delta_{M, G}$ (Nakai [5]; see also Sario-Nakai [7, p. 183]).

Let $j : G^* \to \hat{G} \subset R^*$ be the subjective continuous mapping such that $j(x) = x$ on G and $f(x) = f(j(x))$ for all $x \in G^*$, the Royden compactification of G, and $f \in M(R)$, the Royden algebra of R. Here \hat{G} is the closure of G in the Royden compactification R^* of R. Note that a Borel subset $E \subset \partial G$ has a positive harmonic measure if and only if $j^{-1}(E)$ has a positive harmonic measure (cf. Sario-Nakai [7, p. 192]). Therefore $j(q) \notin \partial G$.

In view of Lemma 2 it is obvious that $j(q) \in \text{Cl}(\partial G)$, the closure being taken in R^*.

For each $m \geq 1$, $u_m(q) = u_m(j(q)) = 1$ since $j(q) \in \text{Cl}(\partial G) - \partial G$. Thus by virtue of integral representations of ω and u_m, it is not difficult to see that $0 < \omega \leq \beta u_m$ on G, where $\beta = \bar{\omega}(q)$. Therefore $0 < \omega \leq \beta u$ on G and ω is a constant multiple of u on G as in §4.

This completes the proof of Theorem 1.

6. We turn to Riemannian n-manifolds for $n \geq 3$. Our manifold will be a submanifold of an infinitely sheeted covering manifold of the n-dimensional Euclidean space R^n. Note that R^n and \hat{U} share the properties stated in Lemma 1.

For the construction replace the radial slits $\sum^\infty_{v=1} (1 \leq v \leq 2^{2m})$ by the hemispheres

$$H_{hk} = \{8^v x \in R^n \mid |x| = 1 \text{ and } x^1 \geq 0\}$$

where $8^v x = (8^v x^1, \cdots, 8^v x^n)$ for $x = (x^1, \cdots, x^n)$. Denote by M the infinitely sheeted covering manifold of R^n, constructed exactly in the same way as in R. The counterparts for Lemma 2 and Theorem 1 now read:

Lemma 3. The Riemannian n-manifold M carries no nonconstant bounded harmonic functions. Every bounded harmonic function on the submanifold

$$N = \{x \in M \mid |\pi(x)| > 1\}$$

attains the same value at all the points in M which lie over the same point.
in \mathbb{R}^n if it continuously vanishes on
$$\partial N = \{ x \in M \mid |\pi(x)| = 1 \}. $$

Theorem 2. The Riemannian n-manifold N ($n \geq 3$) carries a unique (up to constant factors) HD^--minimal function but no HD-minimal functions.

The proofs of Lemma 3 and Theorem 2 are similar to those of Lemma 2 and Theorem 1 (cf. Kwon [3]).

References

Department of Mathematics, University of Texas, Austin, Texas 78712