A NOTE ON A LEMMA OF ZARISKI AND HIGHER DERIVATIONS

WEI-EIHN KUAN

Abstract. A sufficient condition is given for an a-adic complete ring R to be a power series ring over a subring.

1. Introduction. We prove in this note the following theorem: Let R be a ring and let a be an ideal in R such that \(\cap_{i=0}^\infty a^i = 0 \) and R is complete with respect to the a-adic topology. Assume that there exists a higher derivation \(D = \{D_i\}_{i=0}^\infty \) of R such that \(D_1(x) = 1 \) for some \(x \in a \). Let \(E = D_0 - x D_1 + \cdots + (-1)^n x^n D_n + \cdots \). If \(E(x) = 0 \), then there exists a subring \(R_1 \) of R such that \(R = R_1[[x]] \), and x is analytically independent over \(R_1 \).

This result generalizes Zariski's original lemma [5, Lemma 4, p. 526], and [1, Theorem 6, p. 412], a version of Zariski's lemma when R is of positive characteristic, and also removes the condition that R is an integral domain as we mentioned at the end of [1, p. 414]. [5, Lemma 4, p. 256] played a very important role in the study of analytic product of an affine algebraic variety \(V \) along a given subvariety \(W \) of \(V \) in A. Seidenberg's paper on differential ideals [4].

In the last section, we generalize a lemma of M. Miyanishi [2, p. 194] slightly, and give some remarks on his proofs of his lemma and Proposition 1.3 [2, p. 194].

2. Preliminaries. Throughout this note, all rings are commutative with identity. A derivation \(D \) of a ring R is an additive group homomorphism from R to R such that \(D(a \cdot b) = a Db + b Da \) for all a and b in R. A higher derivation \(D = \{D_i\}_{i=0}^\infty \) of a ring R is a sequence of additive group homomorphisms from R to R such that

1. \(D_0 \) = identity map on R, and
2. \(D_n(a \cdot b) = \sum_{i=0}^n D_i(a) \cdot D_{n-i}(b) \) for all \(n = 1, 2, \cdots \), and for all a and b in R. (Note \(D_1 \) is always a derivation of R.) Leibniz formula.

Let \(R \) be a ring and let \(a \) be an ideal in \(R \). Then \(R \) has a topological structure with \(\{a^i\}_{i=0}^\infty \) as the fundamental system of neighborhoods of the
zero in R. This is the so-called a-adic topology in R. Both addition and multiplication are continuous in a-adic topology. R is a Hausdorff space if and only if $\cap_{i=0}^{\infty} a^i = 0$. A mapping $f: R \rightarrow R$ is continuous if there exists a subsequence $\{a^n\}_{n=0}^{\infty}$ of the sequence $\{a^n\}_{n=0}^{\infty}$ such that $f(a^n) \subseteq a^n$, for each natural number n.

Lemma 1. Let R be a ring. Let $D = \{D_i\}_{i=0}^{\infty}$ be a higher derivation of R. Then

1. For $a_1, \ldots, a_n \in R$, and for each natural number m,

$$D_m(a_1 \cdots a_n) = \sum_{i=1}^{n} a_1 \cdots \hat{a}_i \cdots a_n D_m(a_i)$$

$$+ \sum_{i=1}^{m-1} D_i(a_1 \cdots a_{n-1}) \cdot D_{m-i}(a_n)$$

$$+ \sum_{i=1}^{m-1} \sum_{j=2}^{n-1} a_{j+1} \cdots a_n D_i(a_1 \cdots a_{j-1}) D_{m-i}(a_j),$$

where $a_1 \cdots \hat{a}_i \cdots a_n = a_1 \cdots a_{i-1} a_{i+1} \cdots a_n$.

2. For each ideal a in R, and for each natural number m, $D_m(a^n) \subseteq a^{n-m}$ for each a^n, i.e. D_m is continuous with respect to the a-adic topology.

3. For each ideal a in R and for each $x \in a$, let $E_x = \sum_{i=0}^{\infty} (1)^i x^i D_i$. For each natural number l, $E_l(a^n) \subseteq a^n$ for each a^n, i.e. E_l is a continuous additive group homomorphism of R with respect to the a-adic topology.

Proof. Straightforward.

Lemma 2. Let R be a ring. Let a be an ideal of R such that $\cap_{i=0}^{\infty} a^i = 0$. Assume R is complete with respect to the a-adic topology. Let $x \in a$, and let $E_x = \sum_{i=0}^{\infty} (-1)^i x^i D_i$. Then the sequence $\{E_x\}_{i=0}^{\infty}$ is uniformly convergent, and $E = \sum_{i=0}^{\infty} (-1)^i x^i D_i = \lim_{i \to \infty} E_i$ is a continuous endomorphism of R.

Proof. The sequence $\{E_x(a)\}$ is a Cauchy sequence for each $a \in R$. In fact $E_x(a) - E_x(a) \in a^n$ for $i, j > n$; i.e., for each given a^n, there exists a natural number $N (= n)$ such that $E_x(a) - E_x(a) \in a^n$ for $i, j > N$. Hence $\{E_x(a)\}$ converges in R. Since the natural number N above is independent of $a \in R$, therefore $\{E_x\}_{i=0}^{\infty}$ converges uniformly in R. Hence $E = \lim_{i \to \infty} E_i$ is continuous. In fact for each a^n and for each $a \in a^n$, there exists a natural number $N = n$ which is independent of a such that $E(a) = (E(a) - E_x(a)) + E_x(a) \in a^n$. Thus $E(a^n) \subseteq a^n$.

Since $E(a + b) = \lim_{i \to \infty} E_i(a + b) = \lim_{i \to \infty} E_i(a) + \lim_{i \to \infty} E_i(b) = E(a) + E(b)$, therefore $E(a + b) = E(a) + E(b)$. Also for each natural number l,
$E_i(a) \cdot E_i(b) \equiv E_i(ab) \mod(x^{i+1})$. Thus $E_i(a)E_i(b) - E_i(ab) \in a^{i+1}$. Therefore

$$\lim_{i \to \infty} E_i(a) \cdot E_i(b) = \lim_{i \to \infty} E_i(ab).$$

But $\lim_{i \to \infty} E_i(a) \cdot E_i(b) = \lim_{i \to \infty} E_i(a) \cdot \lim_{i \to \infty} E_i(b)$. So $E(ab) = E(a)E(b)$.

3. Theorem 1. Let R be a ring and let a be a proper ideal in R such that $\bigcap_{n=0}^{\infty} a^n = 0$, and R is complete with respect to the a-adic topology. Assume that there exists a higher derivation $D = \{D_i\}_{i=0}^{\infty}$ of R such that $D_1(x) = 1$ for some $x \in a$. Let $E = D_0 - xD_1 + \cdots + (-1)^n x^n D_n + \cdots$. If $E(x) = 0$, then there exists a subring R_1 of R such that $R = R_1[[x]]$, and x is analytically independent over R_1; i.e. if $\sum_{n=0}^{\infty} a_i x^n = 0$ where $a_i \in R_1$ then

$$a_i = 0 \text{ for all } i = 1, 2, \ldots .$$

Proof. $E(x) = 0$ implies $E^{-1}(0) = R_x$. Indeed, if $a \in E^{-1}(0)$, then $E(a) = 0$; i.e. $a - xD_1 a + \cdots + (-1)^n x^n D_n a + \cdots = 0$. Thus $a = xD_1 a + \cdots + (-1)^n x^n D_n a + \cdots$ is in R_x. So $E^{-1}(0) \subseteq R_x$. The other inclusion is obvious. Next, we observe that $E^2 = E$. In fact for each $a \in R$,

$$E(a) = a - xD_1 a + \cdots$$

and

$$E^2(a) = E(a) - E(xD_1 a + \cdots) = E(a) - E(x) \cdot E(D_1 a - xD_2 a + \cdots) = E(a),$$

so $E^2(a) = E(a)$ for all $a \in R$. Let $R_1 = E(R)$ then E is an identity map on R_1. Let a be an arbitrary element in R. $E(a) = a - xD_1 a + \cdots + (-1)^n x^n D_n a + \cdots$ implies that $a = E(a) + a_1 x$ for some $a_1 \in R$. Thus $a = E(a) + xE(a_1) + a_2 x^2$ for some $a_2 \in R$, and so on. Therefore we have $a = E(a) + xE(a_1) + \cdots + x^n E(a_n) + \cdots$ for some $a_1, a_2, \ldots, a_n, \ldots$ in R, and $a \in R_1[[x]]$. Hence $R = R_1[[x]]$. Finally we suppose $b_0 + b_1 x + \cdots + b_n x^n + \cdots = 0$ where $b_0, b_1, \ldots, b_n, \ldots$ are in R_1. We prove inductively $b_0 = b_1 = \cdots = b_n = \cdots = 0$. Since E is identity on R_1, $E(b_0 + b_1 x + \cdots + b_n x^n + \cdots) = 0$ implies $b_0 = E(b_0) = 0$. Assume $b_0 = b_1 = \cdots = b_i = 0$. We have $b_{i+1} x^{i+1} + b_{i+2} x^{i+2} + \cdots = 0$. By Lemma 1 and $D_1(x) = 1$, we have $D_n x^n \equiv 0 \mod(x)$ and $D_n x^{n+j} \equiv 0 \mod(x)$ for all natural numbers n and j. Thus

$$0 = D_{i+1}(b_{i+1} x^{i+1} + b_{i+2} x^{i+2} + \cdots)$$

$$= D_{i+1}(b_{i+1} x^{i+1}) + D_{i+1}(b_{i+2} x^{i+2} + \cdots)$$

$$= b_{i+1} D_{i+1}(x^{i+1}) \mod(x) = b_{i+1} \mod(x).$$

Therefore $b_{i+1} + c_{i+1} x = 0$ for some $c_{i+1} \in R$. So $0 = E(b_{i+1} + c_{i+1} x) = b_{i+1}$.

Therefore x is analytically independent over R_1.

If R contains the field of rational numbers as a subring, then every derivation D of R gives rise to a higher derivation of R, namely, \(\{D_0, D, D^2/2!, \ldots, D^n/n!, \ldots\} \) where D^n is the nth successive derivation of D, and D_0 is the identity map in R. Let a be an ideal of R such that R is a complete Hausdorff space with respect to the a-adic topology. Assume $Dx = 1$ for some $x \in a$. Then the endomorphism $E = e^{-xD} = \sum (-1)^n x^n D^n/n!$ always maps x to zero. Let $R_1 = E(R)$, then $D(R_1) = 0$. Thus we have the following

Corollary 1. Let R be a ring containing the field of rational numbers as a subring. Let a be an ideal in R such that R is a complete Hausdorff space with respect to the a-adic topology. Assume there exists a derivation D of R such that $Dx = 1$ for some $x \in a$. Then there exists a subring R_1 of R such that (1) D is zero on R_1 and (2) $R = R_1[[x]]$ and x is analytically independent over R_1.

In the following, a semilocal (local) ring \mathfrak{D} is a Noetherian ring with finitely many (unique) maximal ideals. Let m be the intersection of the maximal ideals of \mathfrak{D}. It is well known that $\bigcap_{i=0}^{\infty} m^i = 0$. In this case we use m-adic topology for R. As a corollary to Corollary 1, we have the original lemma of Zariski.

Corollary 2. Let (\mathfrak{D}, m) be a complete semilocal ring of characteristic zero. Let D be a derivation of \mathfrak{D}. Assume that there exists an element x in m of $1)$ such that Dx is a unit in \mathfrak{D}. Then \mathfrak{D} contains a ring \mathfrak{D}_1 of representatives of the (complete) semilocal ring $\mathfrak{D}/\mathfrak{D}x$ having the following properties: (a) D is zero on \mathfrak{D}_1; (b) x is analytically independent on \mathfrak{D}_1; (c) \mathfrak{D} is the power series ring $\mathfrak{D}_1[[x]]$.

Proof. Replace D by $(1/ Dx)D$ and apply Corollary 1.

We also get [1, Theorem 6, p. 412] as a corollary to the theorem.

Corollary 3. Let (\mathfrak{D}, m) be a complete local ring. Let $x \in m$ and let $D = \{D_i\}_{i=0}^{\infty}$ be a higher derivation of \mathfrak{D} such that D_1x is a unit in \mathfrak{D}, and $D_ix = 0$ for $i > 1$. Then there exists a subring \mathfrak{D}_1 of \mathfrak{D} such that: (a) \mathfrak{D}_1 is a complete local ring, (b) x is analytically independent over \mathfrak{D}_1, and (c) $\mathfrak{D} = \mathfrak{D}_1[[x]]$.

Proof. Let $D_1x = e^{-1}$, where e is a unit in \mathfrak{D}. Replacing $\{D_i\}_{i=0}^{\infty}$ by $\{eD_i\}_{i=0}^{\infty}$, we may assume $D_1x = 1$. Since $D_ix = 0$ for $i > 1$, therefore $Ex = x - xD_1x = 0$ where $E = D_0 - xD_1 + \cdots + (-1)^n x^n D_n + \cdots$. Thus the theorem is applicable.

Remarks. (1) Theorem 1 and Corollary 1 hold under the assumption that D_1x is a unit. The proofs are easily modified.
(2) If \(R \) has \(\mathfrak{a} \) as its sole maximal ideal and is a complete Hausdorff space with respect to the \(\mathfrak{a} \)-adic topology, then \(E(x) = 0 \) and \(x \neq 0 \) implies that \(D_1(x) \) is a unit.

(3) If \(R \) is a complete Hausdorff integral domain with respect to the \(\mathfrak{a} \)-adic topology, then \(E(x) = 0 \) and \(x \neq 0 \) implies that \(D_1(x) \) is a unit.

4. Though the following theorem could be easily proved by a similar technique used in the proof of Theorem 1, we would like to prove it as a corollary to Corollary 1.

Theorem 2. Let \(R \) be a ring containing the field of rational numbers as a subring. Let \(\mathfrak{a} \) be an ideal in \(R \) such that \(\cap \mathfrak{a}^i = 0 \). Assume that there exists a derivation \(D \) of \(R \) such that (1) for each \(\gamma \in R \), \(D(\gamma) = 0 \) for sufficiently large \(i \), and (2) \(D(x) = 1 \) for some \(x \in \mathfrak{a} \). Then (a) there exists a subring \(R_1 \) of \(R \) such that \(R = R_1[x] \) and \(x \) is algebraically independent over \(R_1 \); (b) \(D \) is trivial on \(R_1 \).

Proof. Let \(\hat{R} \) be the completion of \(R \) with respect to the \(\mathfrak{a} \)-adic topology. Then \(\hat{R} \) is a complete Hausdorff space with respect to the topology defined by the filtration \(\mathfrak{a} \supseteq (\mathfrak{a}^2) \supseteq \cdots \supseteq (\mathfrak{a}^n) \supseteq \cdots \), where \((\mathfrak{a}^i)^{\circ} \) is the closure of \(\mathfrak{a}^i \) in \(\hat{R} \). Thus \(\bigcap_{i=0}^{\infty} (\mathfrak{a}^i)^{\circ} = 0 \). Note that \((\mathfrak{a}^i)^{\circ} = \mathfrak{a}^i \hat{R} \) in general and equality holds if \(\mathfrak{a} \) is finitely generated. Let \(\gamma_1, \gamma_2, \cdots, \gamma_n, \cdots \) be a Cauchy sequence in \(R \); Lemma 1 implies that \(\{D^i(\gamma_j)\}_{i=0}^{\infty} \) is also a Cauchy sequence for each \(j \). Define \(\hat{D}^i(\gamma) = \lim_{i \to \infty} D^i(\gamma_j) \). Then it is easy to check that \(\{\hat{D}_0, \hat{D}_1, \cdots, \hat{D}^n/n!, \cdots\} \) forms a higher derivation in \(\hat{R} \). Moreover \(\hat{D}^i(\mathfrak{a}^j) \subseteq (\mathfrak{a}^{-i})^{\circ} \). Indeed let \(\hat{\gamma} \in (\mathfrak{a}^j)^{\circ} \) and let \(\gamma_1, \cdots, \gamma_n, \cdots \) be a sequence in \(\mathfrak{a}^j \) such that \(\lim_{n \to \infty} \gamma_n = \hat{\gamma} \). Then \(\hat{D}^i(\hat{\gamma}) = \lim_{n \to \infty} D^i(\gamma_n) \). Since \(D^i(\gamma_n) \in \mathfrak{a}^{-i} \), therefore \(\hat{D}^i(\hat{\gamma}) \in (\mathfrak{a}^{-i})^{\circ} \). Lemma 1 and Lemma 2 are easily verified. Since the kernel of the natural ring homomorphism from \(R \) to \(\hat{R} \) is \(\mathfrak{a} = 0 \), \(R \) is viewed as a subring of \(\hat{R} \). \(\hat{D}^i \) restricted to \(R \) is \(D^i \) so \(\hat{D}^i x = 1 \) and

\[
\hat{E}(x) = x - (x/1!) \hat{D}(x) + \cdots + (-1)^n(x^n/n!) \hat{D}^n(x) + \cdots
\]

Thus it follows from Theorem 1 that \(\hat{R} = \hat{R}_1[[x]] \), where \(\hat{R}_1 \) is a subring of \(\hat{R} \) and \(x \) is analytically independent over \(\hat{R}_1 \). Let \(R_1 = R \cap \hat{R}_1 \). Then \(R = R_1[x] \). Indeed, let \(\gamma \in R \). Then \(\gamma = a_0 + a_1 x + \cdots + a_n x^n + \cdots \) where \(a_i \in \hat{R}_1 \) for all \(a_i \). Since there exists a natural number \(N \) such that \(D^N(\gamma) = 0 \). Therefore

\[
0 = \hat{D}^N(\gamma) = N! a_N + \frac{1}{2}(N + 1)! a_{N+1} x + \cdots.
\]

Hence \(a_i = 0 \) for all \(i \geq N \), and \(\gamma = a_0 + a_1 x + \cdots + a_{N-1} x^{N-1} \). It follows that \(R \subseteq \hat{R}_1[x] \). Applying \(D^{N-1} \) to \(\gamma \), we have \(D^{N-1}(\gamma) = (N-1)! a_{N-1} \).
Therefore \(a_{N-1} \in R \). Applying \(D^{N-2} \) to \((y-a_{N-1}x^{N-1})=a_0+a_1x+\cdots+a_{N-2}x^{N-2}\), we get \(a_{N-2} \in R \) and so on. Consequently, \(a_0, \cdots, a_{N-1} \) are all in \(R_1 \cap R=R_1 \). So \(R=R_1[x] \), and \(x \) is of course algebraically independent over \(R_1 \).

We would like to thank Professor M. Miyanishi for communicating to us the following result which we also observed independently.

Proposition 1. Let \(R \) be an integral domain of characteristic 0. Assume there is a derivation of \(R \) such that \(D^i(a)=0 \) for each \(a \in R \) and for sufficiently large \(i \). Then \(Dx=0 \) for all units \(x \) in \(R \).

Proof. Let \(x \) be a unit in \(R \), and let \(y \in R \) be such that \(xy=1 \). Then \(xDy+Dx=0 \). Suppose \(Dx \neq 0 \). Thus \(Dy \neq 0 \). Let \(i \) be the natural number such that \(D^ix=0 \) and \(D^mx \neq 0 \) for \(m<i \), also let \(j \) be the natural number such that \(D^jy=0 \) and \(D^py \neq 0 \) for \(p<j \). By Leibniz’s formula,

\[
0 = D^n(xy) = \sum_{k=0}^{n} \binom{n}{k} D^k(x)D^{n-k}(y).
\]

Taking \(n=i+j-2 \) and assuming \(i \leq j \) we get \(D^{i-1}(x) \cdot D^{i-1}(y)=0 \). Hence either \(D^{i-1}(x)=0 \) or \(D^{i-1}(y)=0 \), a contradiction.

Proposition 1 completes the proof of [2, Lemma 1.4, p. 194]. One could not use [2, Proposition 1.4, p. 194] to yield a proof to the last part of [2, Proposition 1.3, p. 193]. But Proposition 1 corrects that part of the proof.

Theorem 3. Let \(R \) be an integral domain of characteristic 0 with a unique maximal ideal \(m \) such that \(\cap_{i=0}^{\infty} m^i=0 \), i.e. \((R, m) \) is a local domain which may not be Noetherian. If there is a derivation \(D \) of \(R \) such that \(D^i(a)=0 \) for each \(a \in R \) and for sufficiently large \(i \), then \(m \) is differential, i.e. \(D(m) \subseteq m \), and \(\bar{D} \) induced by \(D \) on \(R/m \) is trivial.

Proof. Suppose \(Dm \not\subseteq m \). Then there is \(x \in m \) such that \(Dx=u^{-1} \), where \(u \) is a unit in \(R \). Then \(uDx=1 \). Replacing \(D \) by \(uD \), we have \((uD)^i(a)=uD^i(a) \) by Proposition 1. Thus \((uD)^i(a)=0 \) for sufficiently large \(i \). It follows from Theorem 2 that \(R=R_1[x] \), a contradiction. The last part follows from Proposition 1.

Observing the fact that in a polynomial ring \(A[x] \) the units in \(A[X] \) are of the form \(a_0+a_1x+\cdots+a_nx^n \) such that \(a_0 \) is a unit in \(A \) and \(a_2, \cdots, a_n \) are nilpotent in \(A \), we give two examples countering Proposition 1 when \(R \) is not an integral domain.
Example 1. Let $R = \mathbb{Z}/(4)[X]$, where \mathbb{Z} is the domain of integers and X is an indeterminate over $\mathbb{Z}/(4)$. Let D be a derivation of R such that $DX = 1 + 2X + 2X^2$. $(DX)^2 = 1$, $D^2 X = 2 \neq 0$, $D^i(a) = 0$ for each $a \in R$ and for large integers i.

Example 2. Let $R = (\mathbb{Q}[t])[X]$, where \mathbb{Q} is the field of rational numbers and t is an indeterminate over $\mathbb{Q}[t]$. Let D be a derivation of R such that $DX = 1 + tX$. Then DX is a unit ($(DX) \cdot (1-tX) = 1$, $D^2 X = t \neq 0$, and $Dt = 0, D^i(a) = 0$ for each $a \in R$ and for large i.

In the setting of Theorem 2, when R is an integral domain, if there is a derivation D such that DX is a unit for some $x \in a$, then there is a $y \in a$ ($y = x/u$) such that $Dy = 1$. What can one say in a more general case? Both Example 1 and Example 2 give negative answers. Using an idea of Professor M. Rosenlicht [3, Theorem 1, p. 721] we prove the following theorem.

Theorem 4. Let R be a ring, which contains the field of rational numbers, with an ideal a such that $\bigcap_{i=0}^{\infty} a^i = 0$ and R is complete with respect to the a-adic topology. Assume there is a derivation D of R such that DX is a unit for some $x \in a$. Then there exists an element $y \in a$ such that $Dy = 1$.

Proof. If DX is a unit then $D(x/Dx) - 1 \in R_x \subseteq a$. If we can construct a Cauchy sequence $\{x_0, x_1, \ldots, x_n, \ldots\}$ such that $x_i \in xR$ and $DX_i - 1 \in R_x^{i+1}$, then putting $y = \lim_{n \to \infty} x_i$, and since a is also closed, we have $y \in a$ and $Dy = \lim_{n \to \infty} DX_i = 1$. The proposed construction goes inductively as follows: Since $D(R_x^{i+1}) \subseteq R_x^i$, D induces a surjective R-homomorphism $\tilde{D}^i : R_x^{i+1} \to R_x^i \cap R_x^{i+1}$ such that $\tilde{D}^i(x^{i+1}) = (i + 1)x + R_x^{i+1}$.

Therefore there exists $z_i \in R_x^{i+1}$ such that

$$Dz_i \equiv DX_i - 1 \mod(R_x^{i+1})$$

for $i = 1, 2, \ldots$. Thus $D(x_i - z_i) - 1 \in R_x^{i+1}$. Putting $x_i = x_{i-1} - z_i$, we have a sequence $\{x_0 = x/Dx, x_1, x_2, \ldots\}$ such that $DX_i - 1 \in R_x^{i+1} \subseteq a^{i+1}$ for $i = 0, 1, 2, \ldots$. For a given a^n, there exists a positive integer $N (= n)$ such that for $i, j > N, x_i - x_j \in a^n$. Therefore $\{x_0, x_1, \ldots\}$ is a Cauchy sequence as desired.

Added in proof. The author recently discovered that Theorem 2 can be derived from Taylor’s lemma, see Y. Nouze and P. Gabriel’s *Idéaux premiers de l’algèbre enveloppante d’une algèbre de Lie nilpotente*, J. Algebra 6 (1967), 77–99.
REFERENCES

Department of Mathematics, Michigan State University, East Lansing, Michigan 48823