THE kTH CONJUGATE POINT_FUNCTION FOR AN EVEN ORDER LINEAR DIFFERENTIAL EQUATION

GEORGE W. JOHNSON

Abstract. For an even order, two term equation \(L_n y = p(x) y \), \(p(x) > 0 \), \(x \in [0, \infty) \), the \(k \)th conjugate point function \(\eta_k(a) \) is defined and is shown to be a strictly increasing continuous function with domain \([0, b)\) or \([0, \infty)\). Extremal solutions are defined as nontrivial solutions with \(n-1+k \) zeros on \([a, \eta_k(a)]\), and are shown to have exactly \(n-1+k \) zeros, with even order zeros at \(a \) and \(\eta_k(a) \) and exactly \(k-1 \) odd order zeros in \((a, \eta_k(a))\), thus establishing that \(\eta_k(a) < \eta_{k+1}(a) \).

The differential equation considered in this paper is defined as follows: Let \(p_1, \ldots, p_{n+1} \) be positive continuous functions defined on \([0, \infty)\), and let \(A_0 \) denote the set of all continuous functions defined on \([0, \infty)\). For \(y \) in \(A_0 \), define

\[L_0 y = p_1 y. \]

Assume that \(A_i \) and \(L_i y \) have been defined for \(i \leq k-1 \), and let \(A_k \) denote the set of all functions \(y \) for which \(L_{k-1} y \) has a continuous derivative on \([0, \infty)\). For \(y \) in \(A_k \), define

\[L_k y = p_{k+1}(L_{k-1} y)'. \]

The differential equation with which we are concerned is

\[L_n y = p y, \]

where \(p \) is a positive continuous function defined on \([0, \infty)\), and \(n \geq 4 \) is an even integer (cf. [3], [5], [6]).

From (1.2) and (1.3) it follows that \(L_n \) has the factored form

\[L_n y = p_{n+1}(p_n \cdots p_2(p_1 y)' \cdots ')'. \]

For \(y \) in \(A_n \), the function \(L_i y \) is said to have a zero of multiplicity \(k \) at \(x=a \) if

\[L_i y(a) = \cdots = L_{k-1+i} y(a) = 0 \quad \text{and} \quad L_{k+i} y(a) \neq 0. \]
Since the functions p_1, \cdots, p_{n+1} are positive, it follows that if $L_{k-1}y(a) = L_{k-1}y(b) = 0$ for some $a < b$, then there is a number c in (a, b) for which $L_ky(c) = 0$. Moreover, if L_iy has a zero of multiplicity k at $x = a$, then L_iy changes sign at $x = a$ if and only if k is odd.

Denote by $N(k, a)$ the set of all points $x > a$ for which there is a nontrivial solution of (1.3), with zeros at a and x, having at least $n-1+k$ zeros in $[a, x]$. The kth conjugate point of a, denoted by $\eta_k(a)$, is defined to be the infimum of the set $N(k, a)$; if $N(k, a)$ is empty, then $\eta_k(a) = +\infty$.

Leighton and Nehari [4] studied the functions η_k extensively for the equation $(ry')' - py = 0$ which is a special case of (1.3) with $n = 4$, $p_3 = r$, and $p_1 = 1$ if $i \neq 3$.

In this paper we establish the existence of $\eta_k(a)$ whenever $N(k, a)$ is not empty, and we consider the properties of η_k as a function of a. We also investigate the properties of the solutions which are extremal for $\eta_k(a)$, in the following sense. A solution y of (1.3) will be called extremal if y has a zero at a, a zero at $\eta_k(a)$ and $n-1+k$ zeros in $[a, \eta_k(a)]$.

We can now state the main results.

Theorem 1. If y is an extremal solution for $\eta_k(a)$, then y has even order zeros at a and at $\eta_k(a)$; y has exactly $n-1+k$ zeros in $[a, \eta_k(a)]$, with exactly $k-1$ odd order zeros in $(a, \eta_k(a))$; y is never zero in $(0, a)$ or in $(\eta_k(a), \infty)$.

Theorem 2. As a function of a, η_k is a strictly increasing continuous function whose domain is of the form $[0, b)$ or $[0, \infty)$.

In order to establish Theorem 1, we will require the following results. For notational purposes, if y is a solution with $n-1+k$ zeros at r points $x_1 < \cdots < x_r$ we will denote by $m(x_i)$ the multiplicity of the zero of y at x_i. Define the number

\[
M(y) = \sum_{i \in I} m(x_i) + \sum_{i \in J} [m(x_i) - 1]
\]

where

$I = \{i : m(x_i) \text{ is even}\} \quad \text{and} \quad J = \{i : m(x_i) \text{ is odd}\}$

Lemma 1. If $N(m, a)$ is nonempty, then for each $k = 1, \cdots, m$, there exists a kth conjugate point $\eta_k(a)$ and a nontrivial solution y_k having the following properties.

(i) $a < \eta_k(a) \leq \eta_{k+1}(a)$, for $k = 1, \cdots, m-1$.
(ii) y_k has at least $n-1+k$ zeros in $[a, \eta_k(a)]$.
(iii) No nontrivial solution of (1.3) having a zero at a has more than \(n-2+k \) zeros in \([a, \eta_k(a)]\).

For the proof, we observe that if \(N(m, a) \) is nonempty then \(N(k, a) \) is nonempty for \(k \leq m \), and if \(x_0 \in N(m, a) \) then there exist \(x_1 \leq x_2 \leq \cdots \leq x_k \leq x_0 \) such that \(x_t \in N(i, a) \). Thus \(\eta_k(a) \) exists for each \(k < m \) and \(\eta_k(a) \leq \eta_{k+1}(a) \), establishing part (i). Part (iii) is a direct consequence of the definition of \(\eta_k(a) \). If \(N(k, a) \) is finite, or if there exists \(\varepsilon > 0 \) such that the intersection of \(N(k, a) \) with \((\eta_k(a), \eta_k(a) + \varepsilon) \) is empty, then (ii) is immediate. Otherwise we observe that there exists a sequence \(\{x_t\} \) converging monotonically to \(\eta_k(a) \) and a sequence of solutions \(\{y_t\} \) having zeros at \(a \) and \(x_t \) with at least \(n-1+k \) zeros in \([a, x_t]\). With no loss of generality, we may assume that \(y_t \) has zeros at \(a=t_{i_1} < \cdots < t_{i_r} = x_t \) and that there are integers \(m_{i_1}, \cdots, m_r \) with \(m_1 + \cdots + m_r = n-1+k \) such that \(m(t_{i_j}) = m_j \) for all \(j=1, \cdots, r \), and all \(i \). Normalizing each solution \(y_t \), we may apply standard compactness arguments to obtain a nontrivial solution \(y \) of (1.3) and a sequence of solutions \(\{y_t\} \) such that \(L_q y_t \) converges uniformly to \(L_q y \), for each \(q=0, \cdots, n-1 \), on \([a, x_t]\). Since limit points of the zeros \(L_q y_t \) are zeros of \(L_q y \) we have that \(y \) must have at least \(n-1+k \) zeros in \([a, \eta_k(a)]\) with a zero at \(a \) and a zero at \(\eta_k(a) \).

The following lemma, stated without proof, is due to Levin [5].

Lemma 2. There does not exist a nontrivial solution of (1.3) satisfying the following boundary conditions at \(x_1 < \cdots < x_r \).

\[
L_i y(x_j) = 0, \quad i = 0, \cdots, m(x_i) - 1, \quad j = 1, \cdots, r
\]

if \(m(x_i) \) and \(m(x_r) \) are odd and

\[
m(x_i) \text{ is even for } i = 2, \cdots, r-1.
\]

It is an immediate consequence of Lemma 2 that if \(y \) is a nontrivial solution of (1.3) with \(n-1+k \) zeros at the points \(x_1 < \cdots < x_r \), then \(M(y) = n \), the number of odd order zeros of \(y \) must exceed \(k-2 \) and will equal \(k-1 \) only if \(m(x_1) \) and \(m(x_r) \) are even.

Lemma 3. If \(y \) is a nontrivial solution of (1.3) having \(n-1+k \) zeros at \(x_1 < \cdots < x_r \) such that \(M(y) < n \) then there exists a nontrivial solution of (1.3) with \(n-1+k \) zeros on \([x_1, x_r]\).

There are four cases to the proof, depending on whether the zeros at \(x_1 \) and \(x_r \) are of even or odd multiplicity. Each case is treated in a similar fashion, so we will demonstrate the case in which \(m(x_1) \) is even and \(m(x_r) \) is odd. Let \(y_1, \cdots, y_n \) be a fundamental set of solutions of (1.3). By Lemma
2, the matrix

\[
Y(e) = \begin{bmatrix}
L_0y_1(x_1) & L_0y_2(x_1) & \cdots & L_0y_n(x_1) \\
\vdots & \vdots & & \vdots \\
L_0y_1(x_2) & L_0y_2(x_2) & \cdots & L_0y_n(x_2) \\
L_0y_1(x_{r-\varepsilon}) & L_0y_2(x_{r-\varepsilon}) & \cdots & L_0y_n(x_{r-\varepsilon}) \\
\vdots & \vdots & & \vdots \\
L_0y_1(x_1) & L_0y_2(x_1) & \cdots & L_0y_n(x_1)
\end{bmatrix}
\]

is nonsingular for all \(\varepsilon > 0\) sufficiently small, where \(q_i = m(x_i)\); and for \(i = 2, \ldots, r-1\), \(q_i = m(x_i) - 1\) if \(m(x_i)\) is even, \(q_i = m(x_i) - 2\) if \(m(x_i)\) is odd and \(m(x_i) \geq 3\), and \(q_r = n - M(y) - 2\). Then for each \(\varepsilon > 0\) there is a nontrivial solution vector \(c(e) = (c_1(e), \ldots, c_n(e))\) of \(Y(e)c(e) = Y(0)c\) where \(c = (c_1, \ldots, c_n)\) and \(y = \sum_{i=1}^{n} c_i y_i\) is the solution with \(n-1+k\) zeros in \([x_1, x_r]\). Letting \(y(x, e) = \sum_{i=1}^{n} c_i e(y_i(x))\), we have that as \(\varepsilon \to 0\), \(L_j y(x, e)\) converges uniformly to \(L_j y^*(x)\) for \(j = 0, \ldots, n-1\) where \(y^*\) is a nontrivial solution of (1.3). Since \(y - y^*\) satisfies the boundary conditions of Lemma 2, it must be the case that \(y(x) = y^*(x)\) for all \(x\). Now \(y(x, e)\) has an even order zero at each of the points \(x_2, \ldots, x_{r-1}\), and hence for \(\varepsilon\) sufficiently small, \(y(x, e)\) must change sign near each odd order zero of \(y\). A simple count establishes that \(y(x, e)\) must have \(n-1+k\) zeros in \([x_1, x_r-e]\).

Corollary 3.1. If \(y\) is an extremal solution of (1.3) for \(\eta_k(a)\), then the zeros at \(a\) and \(\eta_k(a)\) are of even multiplicity.

If either \(a\) or \(\eta_k(a)\) is of odd multiplicity, then \(M(y) < n\), which contradicts the fact that \(y\) is extremal.

Corollary 3.2. If \(y\) is an extremal solution for \(\eta_k(a)\), then \(y\) has exactly \(n-1+k\) zeros in \([a, \eta_k(a)]\).

If \(y\) has \(n-1+r\) zeros in \([a, \eta_k(a)]\), and if \(r > k\), then \(m(\eta_k(a)) > r-k\). Using the techniques of Lemma 3 with the multiplicity \(m(\eta_k(a)) - 1\) at \(\eta_k(a)\) yields a solution with \(n-2+r\) zeros in \([a, \eta_k(a)-\varepsilon]\).
If an extremal solution for \(\eta_k(a) \) has \(m \) odd order zeros, then clearly
\[
M(y) + m = n - 1 + k,
\]
so that \(m = k - 1 \). If \(y \) has a zero in either \((0, a)\) or
\((\eta_k(a), \infty)\), then \(y \) satisfies the boundary conditions of Lemma 2, yielding
a contradiction. This completes the proof of Theorem 1.

Lemma 4. If \(\eta_k(b) < \infty \), then there exists \(\delta > 0 \) such that for \(a \) in
\((b - \delta, b + \delta)\), \(\eta_k(a) < \infty \).

Let \(y \) be an extremal solution for \(\eta_k(b) \) with zeros at
\(b = x_1 < \cdots < x_r = \eta_k(b) \). Then, for each \(\epsilon \), sufficiently small, we define \(y(x, \epsilon) \) to be
a solution of (1.3) having zeros of multiplicity \(m(x_i) = 1 \) at \(x_i \) if \(i = 1, r \) or if \(m(x_i) \) is odd, a zero of multiplicity \(m(x_i) \) at \(x_i \) if \(m(x_i) \) is even,
\(1 < i < r \), and zero at \(b + \epsilon \). Then we may write

\[
y(x, \epsilon) = \sum_{i=1}^{n} c_i(\epsilon)y_i(x)
\]

where \(\{y_1, \ldots, y_n\} \) is a fundamental set of solutions of (1.3), and with no loss of generality,

\[
\sum_{i=1}^{n} c_i(\epsilon)^2 = 1.
\]

Then as \(\epsilon \to 0 \), \(L_jy(x, \epsilon) \) converges uniformly to \(L_jy^*(x) \), where \(y^* \) is
a nontrivial solution of (1.3) satisfying

\[
y^*(x) = \sum_{i=1}^{n} c_iy_i(x), \quad \sum_{i=1}^{n} c_i^2 = 1.
\]

If \(y^*(x) \neq ky(x) \) for all \(x \), then there is a nontrivial linear combination
of \(y^* \) and \(y \) satisfying the boundary conditions in Lemma 2, which is a
contradiction. Then there is a \(\delta > 0 \) such that if \(|\epsilon| < \delta \), \(y(x, \epsilon) \) changes
sign near each odd order zero of \(y^* \) and near \(\eta_k(b) \) since \(y(x, \epsilon) \) has an
odd order zero at \(\eta_k(b) \) and \(y^* \) has an even order zero there. A simple
count yields that \(y(x, \epsilon) \) has \(n - 1 + k \) zeros in \([b + \epsilon, \eta_k(b) + \delta]\), and this
completes the proof, since a similar argument holds for \(b - \epsilon \).

If we define \(y(x, \epsilon) \) as in Lemma 4 at the points \(x_1, \ldots, x_r \) and require
that \(y(\eta_k(b) - \epsilon, \epsilon) = 0 \) rather than \(y(b - \epsilon) = 0 \), for \(\epsilon > 0 \) then we obtain the
following.

Lemma 5. If \(\eta_k(b) \) exists, then there is a sequence \(\{a_i\} \) converging to \(b \)
in \((b - \delta, b)\) such that \(\eta_k(a_i) < \eta_k(b) \) for each \(i \).

From the preceding discussion, we have for each \(\epsilon > 0 \), sufficiently
small, that there exists a nontrivial solution \(y(x, \epsilon) \) of (1.3) with \(n - 1 + k \)
zeros in \([b - \epsilon, \eta_k(b)]\). From Theorem 1, \(y(x, \epsilon) \) is not an extremal solution
for \(\eta_k(b - \epsilon) \), hence \(\eta_k(b - \epsilon) < \eta_k(b) \).
Corollary 5.1. If $\eta_k(x) < \infty$ for all $x \in [a, b]$ then $\eta_k(a) < \eta_k(b)$.

Suppose to the contrary that $\eta_k(a) \geq \eta_k(b)$. For some $\varepsilon > 0$, $\eta_k(b-\varepsilon) < \eta_k(b)$, $b-\varepsilon > a$ and $S = \{x > a : \eta_k(x) < \eta_k(b-\varepsilon)\}$ is nonempty, and hence if $d = \inf S$, then $\eta_k(d) = \eta_k(b-\varepsilon)$. If $a < d$, then $\eta_k(x) \geq \eta_k(b-\varepsilon) \geq \eta_k(d)$ for all x in (a, d), contradicting Lemma 6. Thus $a = d$. Let x_i be a sequence in S converging monotonically to a. Then arguments of Lemma 1 yield a sequence of extremal solutions y_i converging to a solution y of (1.3) having $n-1+k$ zeros in $[a, \eta_k(b-\varepsilon)]$. But this contradicts the definition of $\eta_k(a)$ since $\eta_k(a) > \eta_k(b) > \eta_k(b-\varepsilon)$.

Corollary 5.2. If $\eta_k(b) < \infty$, then $\eta_k(x) < \infty$ for all $x \leq b$.

If, to the contrary, there exists an $x < b$ for which $N(x, k)$ is empty, let $a = \sup\{x < b : N(x, k) \text{ is empty}\}$. Then $a < b$, and $\eta_k(x) < \infty$ for all x in (a, b). From Corollary 6.1, there is a sequence $\{a_i\}$ in (a, b) such that $a_{i+1} < a_i$, $\eta_k(a_{i+1}) < \eta_k(a_i)$, and a_i converges to a as i tends to ∞. Then the techniques of Lemma 1 yield a solution y of (1.3) such that $y(a) = 0$ and y has $n-1+k$ zeros on $[a, \eta_k(b)]$, contradicting Lemma 4.

Corollary 5.3. η_k is continuous.

If as $x \to a^-$, $\eta_k(x) \to L < \eta_k(a)$, then the arguments of Lemma 1 yield a nontrivial solution of (1.3) with $n-1+k$ zeros in $[a, \eta_k(a)]$ since η_k is increasing. If as $x \to a^+$, $\eta_k(x) \to L > \eta_k(a)$, let $\delta = \frac{1}{2}(L - \eta_k(a))$. By Lemma 4, there exists $\varepsilon > 0$ and a solution of $y(x, \varepsilon)$ having $n-1+k$ zeros in $[a+\varepsilon, \eta_k(a)+\delta]$. This contradicts the fact that η_k is increasing.

Corollaries 5.1, 5.2, and 5.3 complete the proof of Theorem 2.

References

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208