NON-\(n\)-MUTUALLY APOSYNDETIC CONTINUA

LELAND E. ROGERS

Abstract. Relationships are shown between non-\(n\)-mutual aposyndesis and \(C\)-cutting in compact metric continua, including results analogous to those of F. B. Jones in the case of nonaposyndesis.

1. Introduction. In [2], F. Burton Jones discussed nonaposyndesis in compact metric continua, including certain relationships between nonaposyndesis and both cut points and indecomposability. E. J. Vought [5] later proved the \(n\)-aposyndetic versions of many of Jones' results, as did C. L. Hagopian in the case of mutual aposyndesis [2]. This paper is concerned with the analogous results in the case of \(n\)-mutual aposyndesis [4], a generalization of both \(n\)-aposyndesis and mutual aposyndesis.

2. Definitions. A continuum is a nondegenerate closed connected set. The interior of a set \(A\) will be denoted by \(A^\circ\). If \(n \geq 2\) and \(A\) is an \(n\)-point subset of the continuum \(M\), then \(M\) is \(n\)-mutually aposyndetic at \(A\) if there exist \(n\) disjoint subcontinua of \(M\), each containing a point of \(A\) in its interior. If \(M\) is \(n\)-mutually aposyndetic at each \(n\)-point set, then \(M\) is said to be \(n\)-mutually aposyndetic. For \(x \in M\) and \(n \geq 2\), if there exists an \(n\)-point set \(A\) containing \(x\) such that \(M\) is not \(n\)-mutually aposyndetic at \(A\), then \(M\) is \(\text{non-}n\text{-mutually aposyndetic at } x\). For \(n \geq 2\), if \(M\) is \(n\)-mutually aposyndetic at each of its points, then \(M\) is totally \(n\)-mutually aposyndetic. If \(M\) is \(n\)-mutually aposyndetic at no \(n\)-point set, then \(M\) is strictly \(n\)-mutually aposyndetic. For \(n = 2\) we obtain the notions of mutual aposyndesis, total nonmutual aposyndesis, and strict nonmutual aposyndesis [2]. A set \(D\) is said to cut \(x\) from \(y\) in \(M\) if \(D\) intersects every subcontinuum of \(M\) which contains \(\{x, y\}\). A finite set \(\{p_1, \ldots, p_k\}\) is said to \(C\)-cut \(x\) from \(y\) if for each collection \(\{C_1, \ldots, C_k\}\) of disjoint subcontinua such that \(p_i \in C_i^\circ\) (for \(i \leq k\)), \(\bigcup_i C_i\) intersects each subcontinuum containing \(\{x, y\}\). For \(k = 1\) we obtain Hagopian's notion of a single point \(C\)-cutting [2, p. 618].

Received by the editors March 13, 1973.

Key words and phrases. \(n\)-mutual aposyndesis, mutual aposyndesis, aposyndesis, continuum, \(C\)-cut point.
3. **Preliminary theorems.** Theorems 1 and 2 correspond to Jones' Theorems 1 and 4 [3].

Theorem 1. Suppose that \(M \) is a regular Hausdorff continuum, \(n \geq 2 \), and that (1) for each \(i \geq 1 \), \(x_{1i}, \cdots, x_{ni} \) are distinct points such that \(M \) is not \(n \)-mutually aposyndetic at \(\{x_{ji}| j \leq n\} \), and (2) \(y_1, \cdots, y_n \) are distinct points of \(M \) such that for each \(j \leq n \), the sequence \(x_{j1}, x_{j2}, \cdots \) converges to \(y_j \). Then \(M \) is not \(n \)-mutually aposyndetic at \(\{y_j| j \leq n\} \).

Proof. Suppose that there are disjoint subcontinua \(H_1, \cdots, H_n \) such that for each \(j \leq n \), \(y_j \in H_j \). For each \(y_j \leq n \), let \(k_j \) be an integer such that if \(i \leq k_j \), then \(x_{ji} \in H_j \). Let \(k' = \max\{k_j| j \leq n\} \). Then for each \(j \leq n \), \(x_{jk'} \in H_j \). Hence \(M \) is \(n \)-mutually aposyndetic at \(\{x_{jk'}| j \leq n\} \), contrary to hypothesis. Thus the conclusion follows.

Theorem 2. Let \(n \geq 2 \). The set of points at which the compact metric continuum \(M \) is non-\(n \)-mutually aposyndetic is an \(F_\alpha \) set.

Proof. For each positive integer \(j \), let \(A_j \) be the set of all points \(x \in M \) such that there are distinct points \(p_1, \cdots, p_{n-1} \) in \(M - \{x\} \) satisfying the two properties that the distance between any pair in \(\{x\} \cup \{p_j| j \leq n-1\} \) is at least \(1/j \), and that \(M \) is not \(n \)-mutually aposyndetic at \(\{x\} \cup \{p_j| j \leq n-1\} \).

It follows from Theorem 1 that each \(A_j \) is closed. Finally we observe that \(\bigcup_{j=1}^{n-1} A_j \) is exactly the set of points at which \(M \) is non-\(n \)-mutually aposyndetic. This completes the proof.

Definition. For \(n \geq 2 \) and an \((n-1) \)-point set \(A \) in the continuum \(M \), \(D(A) \) denotes the set of all points \(x \) such that either \(x \in A \) or \(M \) is not \(n \)-mutually aposyndetic at \(A \cup \{x\} \).

It follows immediately from the definition that \(M \) is \(n \)-mutually aposyndetic if and only if for each \((n-1) \)-point set \(A \), \(D(A) = A \). By Theorem 1, the set \(D(A) \) is always closed as is the case with the "aposyndetic" analog \(L_1 \) [3, p. 405]; but while \(L_1 \) is always connected, \(D(A) \) need not be connected. The following example shows that it may even be totally disconnected.

Example (for \(n \geq 2 \)). An \((n-1) \)-mutually aposyndetic continuum which is not \(n \)-mutually aposyndetic on exactly one \(n \)-point set.

The continuum \(M \) will be constructed in \(E^3 \). For each \(i \geq 1 \) let \(T_i = [0, 1]^2 \times \{1/i\} \), and define \(T_0 = [0, 1]^2 \times \{0\} \). Let \(b_1, \cdots, b_{2n-2} \) be distinct points of \(\{1\} \times [0, 1] \times \{0\} \). For each \(j \leq 2n-2 \), let \(C_j = \{1\} \times \{y_j(b_j)\} \times [0, 1] \) (\(y_j \) is the projection map onto the \(y \)-axis). Thus each \(C_j \) meets each \(T_i \) and \(C_j \cap T_0 = \{b_j\} \). Let \(T = (\bigcup_{j=0}^{n-1} T_j \cup (\bigcup_{j=1}^{2n-2} C_j) \). Let \(y_1, \cdots, y_{n-1} \) be distinct points of the (two-dimensional) interior of \(T_1 \), and \(x \) a point of \(T_0 - \{b_j| j \leq 2n-2\} \). Let \(A_1, \cdots, A_{2n-2} \) be arcs lying in the (two-dimensional) interior of \(T_1 \), each pair intersecting in exactly the set \(\{y_j| j \leq n-1\} \).
and no arc crossing another. For each \(j \leq 2n - 2 \), let \(S_j \) be a homeomorph of \([0, 1]^2\) such that \(S_{jk} \cap T = \{x\} \cup \{b_i | i \neq j\} \cup A_j \). For \(j \leq 2n - 2 \) and \(k \geq 1 \), let \(S_{jk} \) be a homeomorph of \([0, 1]^2\) such that \(S_{jk} \cap T = \{x\} \cup \{b_i | i \neq j\} \) and such that for each \(j \), the sequence \(S_{jk}, S_{j2}, \ldots \) converges to \(S_{ja} \). Furthermore, we assume that the \(S_{jk}'s \) are chosen to be disjoint in the complement of \(T \). Finally we let

\[
M = \bigcup \{ S_{jk} \mid j \leq 2n - 2, k \geq 0 \} \cup T.
\]

Then \(M \) is \((n-1)\)-mutually aposyndetic, and \(M \) is not \(n \)-mutually aposyndetic at \(\{x\} \cup \{y_i | i \leq n-1\} \), but \(M \) is \(n \)-mutually aposyndetic at any other \(n \)-point set.

4. Cut point theorems. A compact metric continuum which is totally nonaposyndetic (i.e., aposyndetic at none of its points) must contain a cut point [3, p. 409]. In the case of total non-\(n \)-aposyndesis, there must exist an \(n \)-point set which cuts [1, p. 102]. However the corresponding result in the case of mutual aposyndesis does not hold even in the plane, since the example of [4, p. 241] can be observed to be a totally nonmutual aposyndetic continuum in which no point cuts. In fact even strict nonmutual aposyndesis does not guarantee existence of a cut point [2, p. 622]. However, the more general type of cutting, \(C \)-cutting, is guaranteed in the event of total nonmutual aposyndesis [2, p. 619]. This result is extended to the general case of \(n \geq 2 \) in a corollary to the following theorem.

Theorem 3. Suppose \(n \geq 2 \). Let \(U \) be an open set in the compact metric continuum \(M \), and \(L \) be a subset of \(M \) such that for each \(x \in U \) there exists an \((n-1)\)-point set \(A \subset L - \{x\} \) such that \(M \) is not \(n \)-mutually aposyndetic at \(\{x\} \cup A \). Then for each \(r \in M - L \), there exists a point \(s \in U \) such that, for each \((n-1)\)-point set \(B \cup L - \{s\} \) such that \(M \) is not \(n \)-mutually aposyndetic at \(\{s\} \cup B \), the set \(B \) must \(C \)-cut \(r \) from \(s \).

Proof. Let \(r \in M - L \). Suppose that the theorem fails and that \(\mathcal{G} \) denotes the collection of unions of \(n-1 \) disjoint continua missing \(r \), each containing a point of \(L \) in its interior.

Let \(s \in U \). Then there is an \((n-1)\)-point set \(A \subset L - \{s\} \) such that \(M \) is not \(n \)-mutually aposyndetic at \(\{s\} \cup A \) but \(A \) does not \(C \)-cut \(r \) from \(s \). Thus there are disjoint subcontinua \(C_1, \ldots, C_{n-1} \) each containing a point of \(A \) in its interior, and a continuum \(T \) such that \(\{r, s\} \subset T \) and \(T \cap (\bigcup_{i=1}^{n-1} C_i) = \emptyset \). Hence neither \(r \) nor \(s \) is in \(\bigcup_{i=1}^{n-1} C_i \). Since \(M \) is not \(n \)-mutually aposyndetic at \(s \cup A \), it follows that \(M \) must not be aposyndetic at \(s \) with respect to \(\bigcup_{i=1}^{n-1} C_i \). Note that \(\bigcup_{i=1}^{n-1} C_i \) is an element of the collection \(\mathcal{G} \).
Thus we have that for each $s \in U$, M is not aposyndetic at s with respect to some member of \mathcal{G} which does not cut r from s. But by [1, p. 101], there is a point $s \in U$ such that the associated $\bigcup C_i$ does cut r from s. This contradiction concludes the proof of the theorem.

For $n=2$, Theorem 3 takes the form of Theorem 5 of [2, p. 618].

Corollary 1. Let $n \geq 2$. If no $(n-1)$-point set C-cuts in the compact metric continuum M, then M is n-mutually aposyndetic at each point of a dense G_δ set.

Proof. Let D be the set of points at which M is n-mutually aposyndetic. By Theorem 2, $M-D$ is an F_σ set; so D is a G_δ set. Suppose that D is not dense in M. Let W be an open subset of $M-D$. For each positive integer k, let A_k denote the set of all points $x \in W$ such that there exists an $(n-1)$-point set $B \subseteq M-\{x\}$ with the distance between any pair of points in $\{x\} \cup B$ not less than $1/k$, and with M not n-mutually aposyndetic at $\{x\} \cup B$. By Theorem 1, each A_k is closed relative to W. Note that $W = \bigcup_{k=1}^\infty A_k$. By the Baire category theorem, there is an integer k' such that $A_{k'}$ has interior. Let $y \in A_{k'}$ and $\delta > 0$ such that $\delta < 1/k'$ and $N(y, \delta) \subseteq A_{k'}$ [the open ball of radius d and center at x is denoted by $N(x, d)$]. Let $r \in N(y, \delta/2)-N(y, \delta/4)$, and $L=M-\{r\}$. Then for each $x \in N(y, \delta/4)$, there is an $(n-1)$-point set $B \subseteq M-N(x, 1/k')$ such that M is not n-mutually aposyndetic at $\{x\} \cup B$, and since the distance from x to r is at most $3\delta/4$ and $\delta \leq 1/k'$, we see that B lies in $(M-\{r\})-\{x\}$ [which equals $L-\{x\}$]. Then by Theorem 3, there is a point $s \in N(y, \delta/4)$ such that if B is an $(n-1)$-point set in $L-\{s\}$ and M is not n-mutually aposyndetic at $\{s\} \cup B$, then B must C-cut r from s. Since $s \in A_{k'}$, there does exist an $(n-1)$-point set $B \subseteq M-N(s, 1/k')$ [which is contained in $(M-\{r\})-\{s\}=L-\{s\}$] such that M is not n-mutually aposyndetic at $\{s\} \cup B$, and consequently B must C-cut r from s. This contradiction concludes the proof.

Corollary 2. Suppose $n \geq 2$. If the compact metric continuum M is totally non-n-mutually aposyndetic, then M contains an $(n-1)$-point set which C-cuts.

The next theorem is the n-mutual aposyndesis version of Theorem 17 of [3, p. 412].

Theorem 4. Let $n \geq 2$. Suppose the compact metric continuum M is totally non-n-mutually aposyndetic and contains only one $(n-1)$-point set N which C-cuts. Then for each $x \in M-N$, M is not n-mutually aposyndetic at $\{x\} \cup N$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Let \(x \in M - N \), and assume that \(M \) is \(n \)-mutually aposyndetic at \(\{x\} \cup N \). Let \(p_1, \ldots, p_{n-1} \) denote the elements of \(N \). Then there are disjoint continua \(K, H_1, \ldots, H_{n-1} \) such that \(x \in K^0 \) and \(p_i \in H_i^0 \) for each \(i \leq n-1 \). For each \(y \in K^0 \), \(M \) is \(n \)-mutually aposyndetic at \(\{y\} \cup N \). Hence for each such \(y \), there is an \((n-1)\)-point set \(J_y \) different from \(N \) such that \(M \) is not \(n \)-mutually aposyndetic at \(\{y\} \cup J_y \). For each \(i \leq n-1 \) and each \(j \geq 1 \), let \(A_{ij} \) be the set of all points \(y \in K^0 \) such that \(p_i \notin J_y \) and the distance between each pair of points in \(\{p_i\} \cup J_y \) is at least \(\|j \). By Theorem 1, each \(A_{ij} \) is closed relative to \(K^0 \). Since \(K^0 = \bigcup \{A_{ij}|i \leq n-1, j \geq 1\} \), by the Baire category theorem, some \(A_{ij} \) has interior. Then by Theorem 3, there is a point \(s \in A_{ij} \) and corresponding \(J_s \) that \(C \)-cuts \(p_i \) from \(s \). But since \(J_s \neq N \) and \(N \) was the only \((n-1)\)-point set which \(C \)-cuts, we have a contradiction.

Using the following modified concept of composants due to Hagopian \[2, p. 620\] we obtain an analog to Theorem 16 of \[3, p. 411\].

Definition. The \(p \)-quasi-composant of the continuum \(M \) is the set consisting of \(p \) together with the union of all subcontinua containing \(p \) and missing some subcontinuum with interior.

Theorem 5. If the continuum \(M \) has only one \(C \)-cut point \(p \), then the \(p \)-quasi-composant of \(M \) is all of \(M \).

Proof. Let \(x \) and \(y \) be points of \(M - \{p\} \). Since \(p \) is the only \(C \)-cut point, \(x \) cannot \(C \)-cut \(y \) from \(p \), so there are disjoint continua \(H \) and \(K \) such that \(x \in H^0 \) and \(\{p, y\} \subset K \). Thus \(y \in p \)-quasi-composant of \(M \). Since \(y \) was arbitrary in \(M - \{p\} \), we have that \(M = p \)-quasi-composant.

Example. A totally nonmutually aposyndetic compact metric continuum which contains exactly one \(C \)-cut point.

The set of all nonzero integers will be denoted by \(\mathbb{Z}' \). For each \(n \in \mathbb{Z}' \), let \(a_n = 1/(2n\pi + \pi/6) \) and \(b_n = 1/2n\pi \). Let

\[
K = \{ (0, y) \mid -1 \leq y \leq 1 \} \cup \{ (x, \sin 1/x) \mid 0 < |x| \leq 1/\pi \}
\]

with the two points \((-1/\pi, 0)\) and \((1/\pi, 0)\) identified. Set

\[
K' = K \cup (\bigcup \{ (b_n, y) \mid 0 \leq y \leq 1/2, n \in \mathbb{Z}' \})
\]

\[
\cup (\bigcup \{ (x, \frac{1}{2}) \mid a_n \leq x \leq b_n, n \in \mathbb{Z}' \}).
\]

Let \(A \) and \(B \) be the following subsets of \(K' \times [0, 1] \):

\[
A = \bigcup \{ (x, \frac{1}{2}, z) \mid a_n < x < b_n, 0 \leq z < (b_n - x)/(b_n - a_n), n \in \mathbb{Z}' \},
\]

\[
B = \bigcup \{ (x, \sin 1/x, z) \mid a_n < x < b_n, 2 |z - \frac{1}{2}| < (x - a_n)/(b_n - a_n), n \in \mathbb{Z}' \}.
\]
Let \(K'' = K' \times [0, 1] - (A \cup B) \). With the Cantor set denoted by \(C \), we define \(K''' = K'' \times C \) with the set \(\{(0, y, z)\} \times C \) identified for each pair \((y, z) \in [0, 1]^p \), i.e., the Cantor set of limiting (unit-square) disks are identified to form one limiting disk. Finally, let \(M \) denote the continuum \(K''' \) with the four corners of the limiting disk identified to form a point \(p \). Then \(M \) is totally nonmutually aposyndetic and has only one \(C \)-cut point, namely \(p \).

Theorem 6. If the set of all \(C \)-cut points in a compact planar continuum \(M \) is totally disconnected, then \(M \) is locally connected.

Proof. Suppose that \(M \) is not locally connected. Then by [5, p. 130], \(M \) is not 2-aposyndetic. Thus there are distinct points \(x, y, z \in M \) such that \(M \) is not aposyndetic at \(x \) with respect to \(\{y, z\} \). Let \(L \) denote the set of all points \(p \) such that \(M \) is not aposyndetic at \(p \) with respect to \(\{y, z\} \). Note that \(\{x, y, z\} \subseteq L \). Since \(L \) has at most two components [5, p. 128], there must be a nondegenerate continuum \(K \) contained in \(L \). For each \(p \in K - \{y, z\} \), \(p \) \(C \)-cuts \(y \) from \(z \). It follows that the set of all \(C \)-cut points is not totally disconnected. This concludes the proof.

Theorem 7. Let \(n \geq 2 \). The regular Hausdorff continuum \(M \) is strictly non-\(n \)-mutually aposyndetic if and only if for each set \(\{p_1, \cdots, p_n-1\} \) of \(n-1 \) points and each open set \(U \), there exist points \(r, s \in U \) such that \(\{p_i | i < n\} \) \(C \)-cuts \(r \) from \(s \).

Proof. Assume that \(M \) is strictly non-\(n \)-mutually aposyndetic. Let \(p_1, \cdots, p_{n-1} \) be distinct points of \(M \), and let \(U \) be an open set. For each \(x \in U \), \(M \) is not \(n \)-mutually aposyndetic at \(\{x\} \cup \{p_i | i < n\} \). Let \(r \in U - \{p_i | i < n\} \). Then by Theorem 3, there is a point \(s \in U \) such that \(\{p_i | i < n\} \) \(C \)-cuts \(r \) from \(s \).

To prove the converse, we suppose to the contrary that \(x_1, \cdots, x_n \) are distinct points and \(M \) is \(n \)-mutually aposyndetic at \(\{x_i | i \leq n\} \). Then there are disjoint subcontinua \(C_1, \cdots, C_n \) with \(x_i \in C_i^o \) (for each \(i \leq n \)). Consequently, for each pair of points \(r, s \) in the open set \(C_n^o \), \(\{x_i | i \leq n-1\} \) does not \(C \)-cut \(r \) from \(s \). Thus the proof is complete.

Thus we see that while a totally non-\(n \)-mutually continuum may contain only one \(C \)-cut set (of \(n-1 \) points), in strictly non-\(n \)-mutually aposyndetic continua every \((n-1) \)-point set \(C \)-cuts.

References

Department of Mathematics, University of Wyoming, Laramie, Wyoming 82070