A NOTE ON THE HOMEOMORPHISM GROUP
OF THE RATIONAL NUMBERS

WAYNE R. PARK

Abstract. Let Q be the rational numbers with the usual topology, $H(Q)$ the group of homeomorphisms of Q, γ_c the convergence structure of continuous convergence, and σ the coarsest admissible convergence structure which makes $H(Q)$ a convergence group. A counterexample is constructed to show that if κ is a convergence structure on $H(Q)$ such that $\gamma_c \leq \kappa \leq \sigma$, then κ is never principal, hence never topological.

In a previous work by the same author [4], a convergence structure σ on $H(X)$, the group of homeomorphisms of the convergence space X, was developed which is the coarsest of the admissible convergence group structures on $H(X)$. When X is a locally compact topological space, the σ convergence structure becomes a topology, specifically the g-topology [1]. What happens to σ when X is no longer locally compact was left as an open question. Here a simple counterexample describes how badly non-topological the situation is when $X=Q$, the rational numbers with the usual topology. We use the notation as given in [3] and [4].

Let $H(X)$ represent the group of homeomorphisms of the convergence space (X, τ).

Definition. For each $f \in H(X)$ let $\gamma_c f$ consist of all filters \mathcal{F} on $H(X)$ such that

(1) for all $x \in X$ and for all $\Phi \in \tau x$, $\mathcal{F}(\Phi) \in \tau f(x)$.

Here $\mathcal{F}(\Phi) = \omega(\mathcal{F} \times \Phi)$ where $\omega : H(X) \times X \to X$ is the evaluation mapping. The convergence structure γ_c is called the convergence structure of continuous convergence [2].

Definition. For each $f \in H(X)$ let σf consist of all filters \mathcal{F} on $H(X)$ such that \mathcal{F} and \mathcal{F}^{-1} simultaneously belong to $\gamma_c f$.

Here \mathcal{F}^{-1} is the filter with filter base $\{F^{-1} \mid F \in \mathcal{F}\}$ where $F^{-1} = \{f^{-1} \in H(X) \mid f \in F\}$.

It is clear that σ is a finer convergence structure than γ_c ($\gamma_c \leq \sigma$). Moreover for $X=Q$, the rational numbers with the usual topology, σ is strictly finer than γ_c [4]. It is known that γ_c on $H(Q)$ is not a topology [1], and
moreover is not even a principal convergence structure [2]. Here we show the same is true of σ on $H(Q)$, and in fact, true for any convergence structure between γ_c and σ.

Theorem. If κ is a convergence structure on $H(Q)$ such that $\gamma_c \subseteq \kappa \subseteq \sigma$, then κ is not a principal convergence structure.

Proof. Let I be the set of irrational numbers. For each $a \in I$, define a sequence of homeomorphisms $f_{n,a}$ in $H(Q)$ by

$$f_{n,a}(x) = \begin{cases}
-x & \text{if } |x| - 1/n < |x| < |x| + 1/n, \\
\frac{x}{a} & \text{otherwise},
\end{cases}$$

where $x \in Q$, and the integer n is larger than $1/|a|$.

For each $a \in I$, let $F_{N,a} = \{f_{n,a} \in H(Q) | n \geq N\}$ and let \mathcal{F}_a be the filter generated by the filter base $\{F_{N,a}\}$ where N runs through the integers greater than $1/|a|$. As $f_{n,a}^{-1} = f_{n,a}$, it follows that $\mathcal{F}_a = \mathcal{F}_a^{-1}$ for each $a \in I$. Moreover, $\mathcal{F}_a \in \gamma_c(id)$, where id denotes the identity homeomorphism. Namely, let $q \in Q$ and let Φ denote the neighborhood filter of q with the usual topology (convergence structure) τ. To satisfy condition (1) above, let U be arbitrary in Φ. One can find N sufficiently large and a V in Φ such that $\omega(F_{N,a} \times V) \subseteq U$. Hence $\mathcal{F}_a(\Phi) \subseteq \Phi$, so $\mathcal{F}_a(\Phi)$ converges topologically to $id(q) = q$, that is, $\mathcal{F}_a(\Phi) \subseteq \tau(id(q))$.

Now as $\mathcal{F}_a = \mathcal{F}_a^{-1}$ and as $\mathcal{F}_a \in \gamma_c(id)$, it follows that $\mathcal{F}_a \in \sigma(id)$ for each $a \in I$.

But now, if q is any nonzero rational number and Φ its neighborhood filter, $\omega(\bigwedge_a \mathcal{F}_a \times \Phi) = (\bigwedge_a \mathcal{F}_a)(\Phi)$ does not converge to $id(q) = q$. If it did, for any U in Φ we would need to find a V in Φ and a filter base element $\bigcup_a F_{N,a}$ in $\bigwedge_a \mathcal{F}_a$ such that $\omega(\bigcup_a F_{N,a} \times V) \subseteq U$. As irrationals lie arbitrarily close to q, this step is impossible.

We have constructed a family of filters $\{\mathcal{F}_a\}$ such that $\mathcal{F}_a \in \sigma(id)$ for each $a \in I$ but such that $\bigwedge_a \mathcal{F}_a \notin \gamma_c(id)$. This shows that κ cannot be a principal convergence structure.

Bibliography

Department of Mathematics, St. Lawrence University, Canton, New York 13617