## A STABILITY THEOREM FOR A REAL ANALYTIC SINGULAR CAUCHY PROBLEM

W. J. WALKER

ABSTRACT. In this paper we prove the equation  $u_{tt}-t^{2p}u_{xx}-a(t)u_x=0, p>0$ , with initial conditions  $u(x,0)=\alpha(x), u_t(x,0)=\beta(x)$  is well posed provided that  $\alpha(x)$  and  $\beta(x)$  belong to special classes of real analytic functions. In general this problem is not stable for p>1 and  $\alpha(x)$  and  $\beta(x)$  real analytic functions.

1. Introduction. Let A(R) be the class of all real valued functions which are represented by power series expansions on the interval (-R, R). In general the Cauchy problem

(1) 
$$u_{tt} - t^{2p}u_{xx} - a(t)u_x = 0, \quad p > 0,$$

(2) 
$$u(x, 0) = \alpha(x), \quad u_t(x, 0) = \beta(x),$$

is not well posed if  $\alpha(x)$  and  $\beta(x)$  belong to A(R). In fact for p>1 the stability in the uniform metric may be violated (for an example see [1]).

In this paper we define special classes H(R) of functions in A(R) and prove a theorem giving a well-posed problem provided  $\alpha(x)$  and  $\beta(x)$  are restricted to belong to such a class H(R). M. H. Protter [6] gave a condition for a more general problem which implies that (1), (2) is well posed if  $\lim_{t\to 0+} t^{1-p}a(t)=0$ . For further papers on problems of this nature see ([1], [3], [4], [5], [8]). For general abstract existence and uniqueness theorems see [2] and [3]. In particular A. B. Nersesjan in [5] states a theorem which shows that the Cauchy problem is well posed in the case that z is a complex variable,  $\alpha(z)$  and  $\beta(z)$  are analytic for |z| < R and solutions are admitted in the class of functions u(z, t) such that, for each fixed t, u(z, t) is analytic for |z| < R. We shall see that stability occurs for p > 1 in the complex variable case, as opposed to the real variable case, because of the availability of the Cauchy estimates. Namely if z is complex and

$$\max_{0 \le |z| \le \rho} \left| \sum_{n=0}^{\infty} \alpha_n z^n - \sum_{n=0}^{\infty} \phi_n z^n \right| = \delta$$

Received by the editors February 13, 1973.

AMS (MOS) subject classifications (1970). Primary 35A20, 35M05.

then for each n,  $|\alpha_n - \beta_n| \leq \delta/\rho^n$ . Of course such estimates are not available in the case that x is a real variable; however, we define a more general estimate of this nature which we call a G estimate and show that in the real analytic case we have stability provided that  $\alpha(x)$  and  $\beta(x)$  are restricted to a class of functions which have the G estimate property.

2. **Definitions and preliminaries.** Let I be an index set and let  $H(R) = \{\alpha_h(x)\}_{h \in I}$  be a class of functions in A(R).

DEFINITION. H(R) will be said to have the G estimate property if the following condition is satisfied: Suppose  $0 < \rho < R$  and  $\alpha(x) = \sum_{n=0}^{\infty} \alpha_n x^n$  and  $\phi(x) = \sum_{n=0}^{\infty} \phi_n x^n$  are any two functions in H(R). Let

$$\delta(\rho) = \max_{0 \le |x| \le \rho} |\alpha(x) - \phi(x)|;$$

then for every nonnegative integer n,

$$|\alpha_n - \phi_n| \le g(n, \rho)\delta(\rho)/\rho^n$$

where  $g(n, \rho) \leq c(\rho) \prod_{i=0}^{N} (n+i)$ ,  $c(\rho)$  positive and N a fixed positive integer.

EXAMPLES. (i) Suppose  $\{b_n(h)\}$  is a sequence of nonnegative monotone increasing functions each defined for  $h \ge 0$  and satisfying  $b_n(h) \le 1$ . Define

$$H(1) = \left\{ \sum_{n=0}^{\infty} (-1)^n b_n(h) x^n \right\}_{h \in [0, \infty)},$$

then H(1) has the G estimate property with  $g(n, \rho)=1$ . It is easy to show that if  $0 \le h < k$  and z is a complex variable then

$$\left|\sum_{n=0}^{\infty} (-1)^n (b_n(k) - b_n(h)) z^n\right|$$

assumes its maximum on  $|z|=\rho$  at  $z=-\rho$ . Then the Cauchy estimates for the disc  $|z| \le \rho$  in the complex plane give the required results for the interval  $|x| \le \rho$  on the real line.

(ii) A simple example in which  $g(n, \rho)$  must be a function of n is

$$H(1) = \{h/(1+x^2)^2\}_{h\in[0,\infty)}.$$

(iii) If  $H(1) = \{\sin hx\}_{h \in [0, \infty)}$  we have a class of functions which can never satisfy the G estimate property.

Definition. Suppose  $0 < r < \rho < R$ ,  $0 < \theta$ , 0 < X,

$$X + \theta^{p+1}/(p+1) = r,$$

and  $S=\{(x,t):0\leq t\leq\theta,\ |x|\leq X\}$ . The Cauchy problem (1), (2) is said to be G stable on S with respect to the class of functions H(R) if for each  $\varepsilon>0$  there exists  $\delta>0$  such that whenever  $\alpha_1(x),\ \alpha_2(x),\ \beta_1(x),\ \beta_2(x),$  belong to H(R) and  $\max_{0\leq |x|\leq\rho}|\alpha_1(x)-\alpha_2(x)|<\delta,\ \max_{0\leq |x|\leq\rho}|\beta_1(x)-\beta_2(x)|<\delta$ , then if  $u_i(x,t)$  is the solution of (1), (2) with  $\alpha(x)=\alpha_i(x),\ \beta(x)=\beta_i(x),$  i=1,2, it follows that

$$\max_{(x,t)\in S} |u_1(x,t) - u_2(x,t)| < \varepsilon.$$

LEMMA.

$$\sum_{n=0}^{\infty} \sum_{v=0}^{\infty} \sum_{w=0}^{\infty} g(n+w+v) \frac{(n+w+v)!}{n! \, w! \, v!} \alpha^n \beta^v \frac{\gamma^w}{w!}$$

converges for all  $\gamma$  if  $|\alpha| + |\beta| < 1$ .

**PROOF.** Choose  $\delta > 0$  such that  $|\alpha| + |\beta| + \delta < 1$ . Then there exists  $w_0$  such that for all  $w \ge w_0$ ,  $|\gamma|^w/w! < \delta^w$ . Now for each fixed  $w < w_0$  the double series

$$\sum_{n=0}^{\infty} \sum_{v=0}^{\infty} g(n+w+v) \frac{(n+w+v)!}{n! \, v!} \alpha^n \beta^v$$

converges. To prove this we observe that the Appell series

$$\sum_{n=0}^{\infty} \sum_{v=0}^{\infty} \frac{(n+w+v)!}{n!v!} (\alpha^n \beta^v)$$

converges for  $|\alpha|+|\beta|<1$  and the proof will be unaltered by the term g(n+w+v) since  $g(n) \leq c(\rho) \prod_{i=0}^{N} (n+i)$  (for the proof of the convergence of the Appell series see [7, pp. 210-213]). For  $w \geq w_0$  the triple series is dominated by

$$\sum_{n=0}^{\infty} \sum_{w=w_0}^{\infty} \sum_{v=0}^{\infty} g(n+w+v) \frac{(n+w+v)!}{n! \ w! \ v!} |\alpha|^n |\beta|^n \delta^w$$

and again, as above, convergence follows since  $|\alpha| + |\beta| + \delta < 1$  (see Lauricella functions [7, p. 227]).

3. THEOREM. If the class of functions H(R) has the G estimate property then the Cauchy problem (1), (2) is G stable on S with respect to H(R).

PROOF. Suppose  $\alpha_1(x) - \alpha_2(x) = \sum_{n=0}^{\infty} \alpha_n x^n$ ,

$$\beta_1(x) - \beta_2(x) = \sum_{n=0}^{\infty} \beta_n x^n, \quad 0 < r < \rho < R,$$

and  $X+\theta^{p+1}/(p+1)=r$ . We need only assume that a(t) is continuous.

Integrating (1) twice with respect to t, we obtain

$$(3) u - Ku_{xx} - Lu_x = \alpha(x) + t\beta(x)$$

where the operators K and L are defined by

$$(Kf)(t) = \int_0^t \int_0^r s^{2p} f(s) \, ds \, dr, \qquad (Lf)(t) = \int_0^t \int_0^r a(s) f(s) \, ds \, dr,$$

for f(t) a real valued continuous function defined on an interval  $0 \le t \le \theta$ . We shall denote by I(w, v) the summation over all distinct operators obtained by applying L w times and K v times and define  $f_n(t) = \alpha_n + \beta_n t$ . Let  $\| \ \|$  denote the supremum norm on  $C[0, \theta]$ . Then by the G estimate property

$$||f_n|| \le |\alpha_n| + |\beta_n| \theta \le (1 + \theta)g(n)\delta/\rho^n$$

where for convenience we use the abbreviations  $g(n) = g(n, \rho)$  and  $\delta = \delta(\rho)$ . Substitution in (3) shows there will be a solution of the form  $u(x, t) = \sum_{n=0}^{\infty} a_n(t)x^n$  if, for each n,

(4) 
$$a_n(t) = (n+1)(n+2)Ka_{n+2}(t) + (n+1)La_{n+1}(t) + f_n(t)$$
.

Assuming for the moment that the infinite sum is absolutely convergent we will show that (4) is satisfied if, for all n,

$$a_n(t) = \sum_{w=0}^{\infty} \sum_{v=0}^{\infty} \frac{(n+w+2v)!}{n!} I(w,v) f_{n+w+2v}(t).$$

It can be seen that

for 
$$w \ge 1$$
,  $v \ge 1$ ,  $I(w, v) = KI(w, v-1) + LI(w-1, v)$   
for  $w = 0$ ,  $v \ge 1$ ,  $I(0, v) = KI(0, v-1)$   
for  $w \ge 1$ ,  $v = 0$ ,  $I(w, 0) = LI(w-1, 0)$ .

Then it may be verified directly that (4) is an identity.

It remains to show the infinite sum converges absolutely and to prove G stability on  $S = \{(x, t), |x| \le X, 0 \le t \le \theta\}$ .

We see that I(w, v) consists of  $\binom{w+v}{v}$  operators each obtained by applying L w times and K v times. Further, each operator has norm at most  $\theta^{2w+2v(p+1)} ||a||^{w}/(2w)!E(v)$  where

$$E(v) = \prod_{j=1}^{v} (2pj + 2j - 1)(2pj + 2j) \ge (p+1)^{2v}(2v)!.$$

Hence, if we set  $T = \sum_{n=0}^{\infty} ||a_n|| X^n$  and denote  $\sum_{n=0}^{\infty} \sum_{v=0}^{\infty} \sum_{v=0}^{\infty} b_v \sum_{v=0}^{\infty} dv$ 

$$T \leq \sum {w+v \choose v} \frac{(n+w+2v)! X^n \theta^{2w+2v(p+1)} \|a\|^w (1+\theta) g(n+w+2v) \delta}{n! (2w)! (2v)! (p+1)^{2v} \rho^{n+w+2v}}$$

$$\leq \sum {w+v \choose v} \frac{(n+w+v)!}{n! \ w! \ v!} {X \choose \rho}^n \left(\frac{\theta^{(p+1)}}{(p+1)\rho}\right)^v \frac{1}{w!} \left(\frac{\theta^2 \|a\|}{\rho}\right)^w$$

$$\times (1+\theta) g(n+w+v) \delta.$$

Now there exists  $\gamma$  such that  $0 < \gamma < 1$  and

(5) 
$$X/\rho + (\theta^{p+1}/(p+1)\rho)^{1-\gamma} < 1$$

and there exists k>0 such that

(6) 
$$(\theta^{p+1}/(p+1)\rho)^{\gamma} + k < 1.$$

By the lemma and (5)

$$\sum \frac{(n+w+v)!}{n! \ w! \ v!} g(n+w+v) \left(\frac{X}{\rho}\right)^n [(\theta^{\nu+1}/(p+1)\rho)^{1-\gamma}]^{\nu} \frac{(\theta^2 \|a\|/\rho k)^w}{w!}$$

converges. Hence there exists M such that for all w and v

$$Mk^{w} \ge \sum_{n=0}^{\infty} \frac{(n+w+v)!}{n! \ w! \ v!} g(n+w+v) \times \left(\frac{X}{\rho}\right)^{n} [(\theta^{\nu+1}/(p+1)\rho)^{1-\gamma}]^{v} \frac{(\theta^{2} \|a\|/\rho)^{w}}{w!}.$$

Hence

$$T \leq M(1+\theta)\delta \sum_{v=0}^{\infty} \sum_{n=0}^{\infty} {w+v \choose v} [(\theta^{p+1}/(p+1)\rho)^{\gamma}]^{\nu} k^{w}.$$

The latter series converges by (6) and the proof is complete.

## REFERENCES

- 1. I. S. Berezin, On Cauchy's problem for linear equations of the second order with initial conditions on a parabolic line, Mat. Sb. 24 (66) (1949), 301-320; English transl., Amer. Math. Soc. Transl. (1) 4 (1962), 415-439. MR 11, 112.
- 2. R. Carroll, Some degenerate Cauchy problems with operator coefficients, Pacific J. Math. 13 (1963), 471-485. MR 29 #367.
- 3. R. Carroll and C. Wang, On the degenerate Cauchy problem, Canad. J. Math. 17 (1965), 245-256. MR 36 #489.
- 4. Chi Min-you, The Cauchy problem for a class of hyperbolic equations with data on a line of parabolic degeneracy, Acta. Math. Sinica 8 (1958), 521-529=Chinese Math. 9 (1967), 246-254. MR 21 #5815.

- 5. A. B. Nersesjan, The Cauchy problem for degenerating hyperbolic equations of second order, Dokl. Akad. Nauk SSSR 166 (1966), 1288-1291=Soviet Math. Dokl. 7 (1966), 278-281. MR 33 #4465.
- 6. M. H. Protter, The Cauchy problem for a hyperbolic second order equation with data on the parabolic line, Canad. J. Math. 6 (1954), 542-553. MR 16, 255.
- 7. L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966. MR 34 #1570.
- 8. S. A. Tersenov, A problem with data given on a line of degeneracy for a system of hyperbolic equations, Dokl. Akad. Nauk SSSR 155 (1964), 285-288=Soviet Math. Dokl. 5 (1964), 409-413. MR 29 #1439.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AUCKLAND, PRIVATE BAG, AUCKLAND, NEW ZEALAND