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A GENERALIZATION OF STRONG RIESZIAN
SUMMABILITY

L.  I.  HOLDER

Abstract. Strong summability, [a, ß;p], for the Bosanquet-

Linfoot (a, ß) summability method is defined so that [a, 0;/>] is

identical to strong Rieszian summability, [R; <x,p\. The main result

proved in this paper shows consistency in the sense that [a, ß;p]

summability implies [a.',ß';q] summability, for a'>tx or a'=a,

ß'>ß; and t^q'—p. Also, a necessary condition for [a, ß;p]

summability and relationships between strong and absolute (a, ß)

summability are given.

1. Introduction. In 1931 L. S. Bosanquet and E. H. Linfoot [1] gave

the following definition of a double scale summability method, generalizing

Riesz' arithmetic mean (R, n, a).

Definition 1.1. A series 2 an ¡s said to be summable (a, /?) where

either a>0 or a=0, /5_0, to the sum S, provided

(1.1) lim   2 *a-»M* log"'—^— an = S
<o->cc n<<o 1 n/CD

for each sufficiently large C, where B=logß C.

Absolute summability for this method has been defined [2] and has

been shown to be consistent, in the sense that |<x, ß\ summability implies

|a', ß'\ summability if either a'>oc or a' = a, ß'>ß, where a>0 or a=0,

/?=0. in the present paper a similar result is obtained for strong (a, ß)

summability.

Definition 2.1. The series 2 an is said to be strongly summable

(a., ß) with index />=1, briefly, summable [a, ß;p] to the sum S, if 2 an

is summable (a, ß) to S, and for all sufficiently large C,

\ujuA('"\u)

/*Cl)   j

rji i
»
du = o((o)
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as «y—»co, for a>0, or a=0, jtf—O, where

(1.3) A^\u) = 2 B(l - nluf log"" —^— an.
ntu 1 - nju

For ß =0 this reduces to strong Rieszian summability as defined by Boyd

and Hyslop [2].

The following additional notation will be used throughout the remainder

of this paper. Let

*.» = Bux log-'(C/ii),   if u > 0

= 0 if u = 0 and a > 0 or a = 0,   ß > 0,

4(") = 2 a»>       W = 2 nan-
n^u n^u

2. Preliminary lemmas.

Lemma 2.1.   If J^an is summable [a, ß;p], then one of the following

relationships holds,

(i) *>l-llp;
(ii) o>=l-llp,ß>llpifp>l, ß>0ifp=l.

Proof. For w>l, write N=[u] if u is not an integer, and N=u—l

otherwise. Then we have

u y A^Xu) = IT1! *;,(1 - nju)nan
au n=0

= u-x2®a.ß(l - n¡u)nan + u~x^(l - N/u)NaN
7!=0

= Sx + S2,

say. It follows that

em t rtü

(2.1)    jjsíi»d«^2»yi

Now,
du

d« +

I   |S2|» du -I   if* 10^(1 - JV/h)|» N» \aN\' du

I<o]-l /"¿V+l

A series of straightforward estimates can now be employed, each of which

strengthens the inequality, with the final result,

rto [«]—i       p

is2rdu^2c"
Jx N=l        Jo

löir-l        /•l/(/V+i) r>

»«"-»log-**-do
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if <x>0, and the last integral converges only if (i) or (ii) holds. A similar

result is true for a=0, ß>0.

Since the second integral on the right-hand side of (2.1) is finite, the

conclusion follows. This result parallels the necessary condition for

strong Rieszian summability, [R; <z,p], that a>l — \\p, shown by Boyd

and Hyslop [2].

Lemma 2.2.    Let the integer h be defined as follows:

h = [a] if a is not an integer,

or a is an integer and ß > 0,

= a — 1    if ct is an integer and ß =■ 0.

Then for a>l or a=l, ß>0,

-f At'-'Xu) = ir""1 f^a - v)Bh_x(uv) dv,
du Jo

where B0(x)=B(x) and B, (x)=¡x B^Aft) dt,j= 1.

Proof.   We may write

£ Ai..»(u) = 1 2<d;,(i _ n/M)nflfl = I [\ß(l _ t¡u) dB{í)
Uli U    n<u tí" Jo

- -li^./i - '/")ß(0l!:i + - ÍV/i(i - 'lu)B(t)dt)
Il l u Jo )

= -. ÍW/i(l - v)B(uv) dv.
U    Jo

This is the desired result if /7=1 and for /?>1 repeated integration by

parts yields the result.

Lemma 2.3. For a>0 or a=0, ß>0 and h defined as in Lemma 2.2

write K(u)=<î>xh^v(l—u), and for a'>a or a' = a, ß'>ß, write k(u)=

^-#'(1 -«)/í)i':r)(l -«)• Then K(u) and k(u) have the following properties

for sufficiently ¡arge C.
(i) Either K(u) is a constant on [0, 1], or K(u) is positive, nondecreasing,

continuously different ¡able on [0, 1), e L[0, 1], lim„_,- K(u)= + oo, and

uK'(u)jK(u) is nondecreasing on [0, 1).

(ii) k(u) is continuously different table on [0, 1), nonincr easing, and

Iim,,..!- k(u)=0.

Proof. These results are direct consequences of the definitions and

the order relations

K(u) = 0{(l - H/*-*-"1 log-*(C/(l - ti))}    if a * h

= 0{(l - H)"1 \og-ß~\CI(l - u))}     if a = h.
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3. Consistency.

Theorem 3.1.   If 2 a„ is summable [a, ß;p] to S, it is also summable

[a', ß';q] to S, where 1 ̂ q^p, and either a'>a or a' = a, ß'>ß.

Proof.   Case (i): A^l. From Lemmas 2.2 and 2.3 we have, forp^l,

fu
u — Al"->\u)

du
"du = r liT* f *{^î,(l - v)Bh_x(uv) dv

Ji   I     Jo

C" I      Í*1
=       u-"    K(v)k(v)Bh_x(uv) dv

Jx   |      Jo

du

We integrate by parts, writingg0(u, v)=u~h¡l K(t)Bh_x(ut) dt, and obtain,

since the integrated term vanishes,

f u-A^-O'Xu)
du

du

du

'du = r\í\-k'(v))g0(u,v)dv'
Ji   \Jo

fa I fX ;
= \k'(v)\x-x/*{\k'(v)\x" g0(u, v)} dv

Ji   \Jo

-IIO/'001 tf'1 {[lk'iv)l lgo("' r)rHdu

^A^j\k'(v)\\g0(u,v)\pdvdu,

where A = (k(0))p~1. The inner integral exists since, for example, when

<x'>a, the integrand is of order at worst (1— v)x'~h~x log*(C/(l— v)) for

some Ô, and (l-p)-1log-"'-"-1(C/(l-»)) if <x'=ix,ß'>ß. So the iter-

ated integral also exists and interchange of order of integration is justified.

Thus,

(3.1)

u — A
du

(«'./»'),
(«) 'du ^ AÍ\k'iv)\ dvHgoiu, v)\p du

= ^ \g¿u,v0)\>du

where 0<y0<l, since ¡f \g0iu, v)\p du is a continuous function of v on

[0, 1]. The constant A depends only on a, ß, a', ß' and p and is not

necessarily the same in different occurrences. Consider now the integral

on the right-hand side of (3.1).

(3.2)

fW", v0)\> du = f" \u~* r°Kit)Bh_xiut) dt
Jx Jx   I      Jo

du

fa I /*]

-      \u-\
Ji   I Jo

K(vv0)Bh_x(uvv0) dv\ du.
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If K(u) is not a constant, we integrate by parts, writing

K(vv0) =
K(vv0)

K(v)
K(v),       gx(u, v) = u "v0 K(t)Bh_x(utv0) dt.

The integrated term vanishes, since lim,,..,! K(vv0)lK(v)=0, by Lemma 2.3.

Thus,
V

lgo(", "o)l   du = \ l-———^-)gx(u,v)dv
Ji Ji    Jo \     dv  K(v) I

du.

From the property that uK'(u)¡K(u) is nondecreasing, one can show that

d(K(vv0)lK(v))ldv^O on [0, 1). Applying Holder's inequality, as above,

then yields,

fa ¡"ta pi

Jilg0(K,t>o)l"i/u^Ji Jo
d K(vv0)

dv

\gx(u, v)\v dv du

j°\gx(u,v)\pdu

dv  K(v)

_Ar\d K(vv0)

Jo \dv  K(v)

= AJ"\g1(u,Vx)\>'du,

where 0<y!<l. Continuing in this manner, we obtain, from (3.1), for

»=1,2, ••■,
V

(3.3)

where

r u — A    '
du

(«) du^j^ \gn(u,vn)\*du,

gn(u, v) = u \vi ■ ■ ■ vn_x    K(t)Bh_x(utv0Vx ■ ■ ■ vn_x) dt,

0<pfc<l, À;=0, 1, • • ■ , n—l, and the vk depend on <o but not on u.

The sequence {Vn}, where Vn=v0Vx • • • v„, is monotone decreasing

and positive, hence convergent. Let lim Vn=V. Also limt;„=l. After

changing variables (3.3) may be written

\u f- Atí-'\u) du<A\     u-hVn    K(wn)Bh_x(uvVn) dv
Ji   I   du Ji Jo

du,

and this is true for n=0, 1, 2, • • •. For each u e [I, <w], the function

Bh_x(uv) is continuous for at least almost all v e [0, 1], being a step

function if h=l and absolutely continuous if h>l, and it is bounded.

Since K(v) e L[0, 1] and is continuous on [0, 1), it follows that passage to

the limit inside the inner integral is justified. Passage to the limit inside

the outer integral is also justified, since the integrand is uniformly bounded,
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du

dt

with respect to n. Thus, if K>0,

f u — Aw-I'\u) *du <A¡° \u-hV PK(v)Bh_x(uVv) dv
Ji   |   du Ji   | Jo

a rVto I r1
= f\      \t-"V+1 \ K(v)Bh_x(tv)dv

V Jv    \ Jo
(3-4) .„■     ¡-X

<: A      \rh    K(v)Bh_x(tv) dv dt
Jr I    Jo

[•a I     J j>

= yl / - y4(«-"(í)   di,
Ji   I di

since for 0<-/<l, dAl''ß)(t)jdt=0. So

i" L — y4(a'-"',(M)rdu = o(a>)
Ji   \   du |

as a)->oo, if K>0 and K(u) is not a constant.

If K=0, the result is trivial, and if K(u) is a constant, then equation

(3.2) gives a satisfactory estimate on f™ |w dA(u)ix''ß)ldu\p du. In fact,

equation (3.4) will again be valid, with V=v0.

Case (ii): h=0.    Bosanquet and Linfoot [1] have shown that

Let

and

A{t-'\u) = f 0>;/l - v)A(uv) dv.

AtAu-ß)(u) = Al'-ß)(u + t)- Alx-ß)(u)

AtA(u, v) = A((u + t)v) - A(uv).

Then, we may write

fm fa        fl
I   \uAiA{x'-ß'}(u)\pdu = \     m     K(v)k(v)AtA(u,v)dv du.

Proceeding exactly as in Case (i), we arrive at the following inequality,

analogous to (3.4),

r<a ru> I        1*1

|   \u^tí,f\u)\vdu^A\    \uV\  K(v)AtA(u,vV)dv
Ji Ji    |       Jo

du,

where 0^K<1. If K=0, the desired result is obtained after dividing by

|/|p and letting t approach zero. The interchange of liroi' and integration

is discussed below. If K>0, we write r=Vt, v=uV and observe that
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AtA(u, vV) = ArA(v, v). This gives,

fa fVa       fX a
|u b.tAw-f'Xu)\' du^Ai       v\ Kiv) ATA(v, v) dv

Ji Jv      Jo

< A\*\v l^A^'Xv)^ dv.
(3.5)

dv

Suppose now that 0<í<¿, so that 0<t<¿ also, and as i->-0, t-»-0. We

divide both sides of (3.5) by |fp| and consider the right-hand integral.

JV t Jx/2      JO T
dv,

since ATA(v, v)=0 for 0££v:£í¿ and 0<v^l. We partition the interval

[J, w] as follows: {£, 1,2, 3,-- • , [tu], a>}. For A:<v<A:+l (fc=l,2, ••• ,
[w] — 1), we may write the inner integral on the right-hand side of (3.6) in

the form

k  a     fn/v

2-        K(v)dv + Rk+1,
n=X T Jnln/v+r

where /?w=0 if 0<r£k+l-v, and Rk+i=T-lak+1 }l+1h+r K(v) dv if

T>k+\—v. For 0<T^rc+l —f, then, we have

A,A(v, v)f1        Ar/l(i
»    KW-2-1
JO T

dv ^ Mk[K(k/v)Y,

where M)t=max„sjfc|an|,,(rc-|-l)p- Now,

fk+X It,    i     1\2 fx

[K(k\v)T> dv ̂  l-f-^
Jk k

¡\k(u)f du,
Jo

and for 0<oc<l,

[K(u)]p = 0{(1 - «)"*-'log-"(C/(l - «))}.

Thus, by Lemma 2.1 the above integral is finite. When a=0, the same

lemma shows that/?=l and ß>0, so that

[K(u)]p = 0{(l - it)'1 \og-'-\CI(l - u))}

which is again 7-integrable on [0, 1]. The case a=l, ß^O also results in a

finite integral, as is easily seen.
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When T>k+l— v, we need also consider the term Rk+i. We have

NW ^ ¿ I * P       Oi,(l-v)dv'
I T Jí+1/v+r

<i4

= Ol(k + 1 - v)ai,-p log -ßj> c
k + 1 - v

if 0<a<l, which, again by Lemma 2.1 is L-integrable on [k,k + l]. If

oc=0, ß>0 or a=l, /3<0, Lemma 2.1 and the appropriate order relations

show that in these cases, too, the integral involved is finite.

The arguments for the intervals (\, 1) and ([to], oj) are similar. Thus,

for 0<t<-¡-, the integrand on the right-hand side of (3.6) is uniformly

dominated by a summable function. The argument for — |-<t<0 is similar.

So passage to the limit under the integral sign in (3.6) as t-*0 is permitted.

Since for <x'>a, or a' = a, ß'>ß, convergence of the integrals involved is

improved, interchange of limit and integration after dividing by \t\p on

the left-hand side of (3.5) is also permitted. From (3.5), then, we have

d
u — A

du

<a'./n
(«) du < A

d   ¿
v — A

dv
(«./»(r) dv.

Now suppose l^q-^p. Then

u — A{°-ß,)(u) du^ll
i  I   if« Ui

u — A{*'-ß,)(u)
du

p\q/p

J>
l-a/j)

= oW") ■ 0(co1-"/p) = 0(a).

Finally, Bosanquet and Linfoot have shown that summability (a, ß)

implies summability (a', ß') with a, ß, a', ß' as specified. The proof is

therefore complete.

4. Relation to absolute summability. Absolute (a, ß) summability

means that A(z'ß)(u) is of bounded variation on [1, oo) (see [3]). Examples

are known of series summable \C, <x| but not [C, a; p] for p>l (see e.g.

Hyslop [4]) and also of series summable [C, a; p] but not \C, a|. These
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same examples show, then, that |oc, ß\ and [a, ß;p] summability are not

in general comparable. We do, however, have the following theorem.

Theorem 4.1.   //2 an is summable |<x, ß\,for a>0, or a=0, ß>0, then

it is also summable [a, ß; 1].

Proof.   It is known (see [3]) that |<x, ß\ summability implies (a, ß)

summability. By hypothesis

lim P
(->» Ji

- A^Xu)
du

du = L       (0 S L < co)

from which it follows also that

lim iff
o>-> oo CO Jx   Jx du

A{x-ßXu)du dt = L.

But

i r r i a Au.ß)(u)\ dudt = i r r ± A^(u
co Jx Jx | du œ Jx Ju  I du

= f1f A<x->Xu)\du-± f
Jx   \ du I w Ji

Letting co-»oo, we get

L = L - lim - í" L — Al'-ßXu)
ta-oo CO Jx     |     du

So 2 an is summable [<x, /?;!].

di du

u — A{'-'\u)
du

du.

du.
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