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A GENERALIZATION OF STRONG RIESZIAN
SUMMABILITY

L. I. HOLDER

ABSTRACT. Strong summability, [«, §; p], for the Bosanquet-
Linfoot (a, 8) summability method is defined so that [«, 0; p] is
identical to strong Rieszian summability, [R; «, p]. The main result
proved in this paper shows consistency in the sense that [«, §; p]
summability implies [«’, 8; ¢] summability, for «’>a or a'=«a,
B’>p; and 1=¢g=p. Also, a necessary condition for [«, f;p]
summability and relationships between strong and absolute («, )
summability are given.

1. Introduction. In 1931 L. S. Bosanquet and E. H. Linfoot [1] gave
the following definition of a double scale summability method, generalizing
Riesz’ arithmetic mean (R, n, «).

DErFINITION 1.1. A series > a, is said to be summable («, 8) where
either «>0 or «=0, 20, to the sum S, provided

(1.1) lim 3 B(l — njw)*log? ——a, =5
niw

0= n<w 1 - /

for each sufficiently large C, where B=log’ C.

Absolute summability for this method has been defined [2] and has
been shown to be consistent, in the sense that |«, §| summability implies
le’, B’| summability if either «’>a or «’'=«, />, where a>0 or a=0,
f=0. In the present paper a similar result is obtained for strong («, f)
summability.

DerFINITION 2.1. The series > a, is said to be strongly summable
(«, B) with index p=1, briefly, summable [«, 8; p] to the sum S, if 3 a,
is summable («, f) to S, and for all sufficiently large c?

(1.2) fl )
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as w—o0, for >0, or «=0, =0, where

13 A“P(u) = > B(1 — nju)*log™*
(13) W) = 3 B = njulog™* ==
For f =0 this reduces to strong Rieszian summability as defined by Boyd
and Hyslop [2].
The following additional notation will be used throughout the remainder
of this paper. Let

a,.

®, ,(u) = Bu*log™?(Clu), ifu>0

=0 ifu=0anda>00ra=0, =0,
A(u) = Z a,, B(u) = Z na,.
nSu nSu

2. Preliminary lemmas.

Lemma 2.1. If 3 a, is summable [«, B; p], then one of the following
relationships holds,

(i) a>1-1/p;

(i) «=1-1/p, B>1/p if p>1, >0 if p=1.

Proor. For u>1, write N=[u] if u is not an integer, and N=u—1
otherwise. Then we have

N
u ‘-;i A“P(u) = u‘lz(l)a’,,,(l — nfu)na,
u

n=0

N-1
= w3 @, 4(1 — nju)na, + u70, (1 — Nju)Nay

n=0

= Sl + S29
say. It follows that

@.1) ﬁ “|Sl? du < 2”{ fl ¢

Now,

d
i A(a.ﬂ )
u o (u)

I @
du +f |S1? du}.
1

fl |S21” du =J‘1 u=?|®, 4(1 — N/u)|” N” |ay|” du

[w]l-1 PN+1
> > f u™?|®, J(1 — NJu)|® N* |ayl|® du.
N=1JN

A series of straightforward estimates can now be employed, each of which
strengthens the inequality, with the final result,

© [wl—1 1/(N+1)
f ISP duz > Cy f b2 1og=#? € 4y
1 N=1 [1] v
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if «>0, and the last integral converges only if (i) or (ii) holds. A similar
result is true for «=0, £>0.

Since the second integral on the right-hand side of (2.1) is finite, the
conclusion follows. This result parallels the necessary condition for
strong Rieszian summability, [R; «, p], that «>1—1/p, shown by Boyd
and Hyslop [2].

LEMMA 2.2. Let the integer h be defined as follows:
h = [a] if « is not an integer,

or « is an integer and § > 0,
=a — 1 ifaisaninteger and § < 0.

Then for «>1 or a=1, >0,
di ACP(y) =y f QP V(1 — v)B,_y(uv) dv,
u
where By(x)=B(x) and B;(x)={§ B;_,(t) dt,j=1.

PrROOF. We may write

d 1 , 1 .
(—i-l: AP (y) = ;—2 Zq)a-ﬂ(l — nfu)na, = ;”f @, 4(1 — t/u) dB(f)
= ]—2{@ s(1 — t/)B()izs + — f (1 — t/u)B(1) dt

== f &, 4(1 — v)B(uv) dv.
u 0

This is the desired result if /=1 and for #>1 repeated integration by
parts yields the result.

LEMMA 2.3. For a>0 or a=0, >0 and h defined as in Lemma 2.2
write K@)=0!3"(1—u), and for «'>a or a'=a, f'>pB, write k(u)=
olEN(1 —u)/d)"‘“’(l —u). Then K(u) and k(u) have the following properties
for sufficiently large C.

(i) Either K(u) is a constant on [0, 1], or K(u) is positive, nondecreasing,
continuously differentiable on [0,1), € L[0, 1], lim,,- K(u)=4 0, and
uK'(u)[K(u) is nondecreasing on [0, 1).

(ii) k(u) is continuously differentiable on [0, 1), nonincreasing, and
lim, .- k(u)=0.

Proor. These results are direct consequences of the definitions and
the order relations

K@) = 0{(1 — u)* ™' log™(C/(1 — u))} ifea s h
=0{(1 — w)log?(C/(1 — u))} fa=h.
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3. Consistency.

THEOREM 3.1. If > a, is summable [a, B; p] to S, it is also summable
[e, 85 q] to S, where 1 Sq=p, and either &' >a or &'=ua, f'>p.

PrOOF. Case (i): h=1. From Lemmas 2.2 and 2.3 we have, for p21,

w 2 (0]
[htenofa-]
1 1
ﬁ

We integrate by parts, writing go(u, v)=u"" [§ K(t)B,_,(ut) dt, and obtain,
since the integrated term vanishes,

@ V4 (%]
[hdeofas]
1 1

@ 1
=f1 ‘J; lk'(v)ll—l/v{]kl(v)ll/p go(u, v)} do

=[1([wer a) i K lgows o ao)
= A" WO lgsw, o doda,

where A=(k(0))*~1. The inner integral exists since, for example, when
«'>a, the integrand is of order at worst (1—v)* ! log?(C/(1—v)) for
some ¢, and (1—v)~'log”?~#~1(C/(1—v)) if «’=a,’>B. So the iter-
ated integral also exists and interchange of order of integration is justified.
Thus,

“a)

1

P
du

1
u™ J; D1 — v)B,,_y(uv) dv

d .
u— A“F)(y
i (w)

Y4
du.

u"‘flK(v)k(v)Bh_l(uv) dv

J:(—k'(v))go(u, v) dv pdu

d s
u— A(¢ B
i (u)

v
du

u 4 AP (u)

1 w
"du < 4 f k)] do f Igo(u, 0)I° du
du 0 1

G.1) o
—4 f Igo(u, v)l? du

where 0<vy<1, since [} |go(u, v)|” du is a continuous function of v on
[0, 1]. The constant A depends only on «, 8, «’, #' and p and is not
necessarily the same in different occurrences. Consider now the integral
on the right-hand side of (3.1).

[ e s au = f

o .
(32) 0
-|

u f " K(1)B,_,(ut) dt
0

P
du.

1
u'hvof K(vvo)B,,_1(uvvy) dv
0
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If K(u) is not a constant, we integrate by parts, writing

K(vv,)
K@)

The integrated term vanishes, since lim,.; K(vv,)/K(v)=0, by Lemma 2.3.
Thus,
@ @l ! d K(vv,) »
s du = f (— ———) ,v)dv| d
J; |go(ut, vo)| du fl \ & K@) g1(u, v) dv| du

From the property that «K’(u)/K(u) is nondecreasing, one can show that
d(K(vve)/K(v))/dv=0 on [0, 1). Applying Holder’s inequality, as above,
then yields,

[Fie wr du < 4 [ f
-4 f

-4 f g, 0)I? du,

where 0<v,<1. Continuing in this manner, we obtain, from (3.1), for
n=1,2,---,

3.3)

K(vyy) = K(v), g, v) = u-"vo f vK(t)B,,_l(utvo) dt.

d K(vvy)
dv K(v)

d K(vv,) »
& K@) dvf 1g.(u, v)|” du

|g1(u, v)|” dv du

P w
du < f \gaut, o)1 du,
1

w d .
< A(a B’)
. u I (u)

where

g, v) = utvgv, - - - n—lf K(t)By,_y(utvgoy - - - v,_,) dt,

0<v, <1, k=0,1,---,n—1, and the v, depend on w but not on .

The sequence {V,}, where V,=vew,---v,, is monotone decreasing
and positive, hence convergent. Let lim V,=V. Also limv,=1. After
changing variables (3.3) may be written

] D w 1 »
f ud A% P W) du = AJ u"‘V,,f K(vv,)B,_,(uvV,) dv| du
1 du 1 0
and this is true for n=0,1,2,---. For each u € [l, w], the function

B,_;(uv) is continuous for at least almost all v € [0, 1], being a step
function if A=1 and absolutely continuous if 4>1, and it is bounded.
Since K(v) € L[0, 1] and is continuous on [0, 1), it follows that passage to
the limit inside the inner integral is justified. Passage to the limit inside
the outer integral is also justified, since the integrand is uniformly bounded,
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with respect to n. Thus, if ¥'>0,

(9] P w
f du§Af
1 1

d .. »
u— A%P u) du

du

1
u"’VJ. K(v)B,_y(uVv) dv
(1]

() 1 ?
I Zan f K(v)B,_,(tv) dv| dt
[}

3.4

1 P
t"‘f K(v)B,_,(tv) dv| dt
0

[ d »
=4 f It — A“P(z) dt,
1 | dt

since for 0=t<1, d4"“"P(t)/dt=0. So
u .‘i A(a’.ﬂ’)(u)

J; du

as w—0, if ¥ >0 and K(u) is not a constant.

If V=0, the result is trivial, and if K(u) is a constant, then equation
(3.2) gives a satisfactory estimate on (¥ |u dA(u)'**?”|dul|? du. In fact,
equation (3.4) will again be valid, with V=u,.

Case (ii): h=0. Bosanquet and Linfoot [1] have shown that

"du = o(w)

AP (y) =JI(D;,,,(1 — v)A(uv) dv.

Let
AtA(a,ﬂ)(u) = A(z.ﬂ)(u + I) _ A(a,ﬁ)(u)
and

AA(u, v) = A((u + t)v) — A(uv).

Then, we may write

f lu AtA(a'.ﬂ')(u)lp du =j
1 1

Proceeding exactly as in Case (i), we arrive at the following inequality,
analogous to (3.4),

w

p
du.

uflK(u)k(v) AA(u, v)dy

w ] 1 p
J lu A A B WP du < Af qu K(v) AA(u, vV) dv| du,
1 1 0

where 0=V <I. If V=0, the desired result is obtained after dividing by
|£|” and letting ¢ approach zero. The interchange of limi* and integration
is discussed below. If V>0, we write 7=Vt, v=uV and observe that
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A A(u, vV)=A,A(v, v). This gives,

] Vo 1 ?
f lu AAY*)w)|?du < A v| K(v)A,A(v, v) dv| dv
1 v 0

(3.5) °
<A f |v A, A= (»)|? dv.
’I

Suppose now that 0<¢<%, so that 0<r<% also, and as t—0, 7—0. We
divide both sides of (3.5) by |#?| and consider the right-hand integral.

(.6) f: v "y < fl i f K(v )AA(”’ 2 gl dv,

since A, A(v, v)=0 for 0=v=% and 0=Sv=1. We partition the interval
[3, w] as follows: {4,1,2,3,---, [w], w}. For k<v<k+1 (k=1, 2, -

[w] —1), we may write the inner integral on the right-hand side of (3.6) in
the form

A, A‘“"”(v)
t

ka,
> " " K@) dv + Ry,

n=1T Jn/v+r

where R,.,=0 if 0<7=k+1—v», and R, ;=7 [xs1/v+: K@) dv if
7>k+1—v. For 0<7=<k+1—v, then, we have

RO v| < MK®EMY,

where M, =max,la,|?(k+1)*. Now,

(k + 1)

[y as f k()] d,

and for 0<a<1,
[K@)) = 0{(1 — u)*?log™**(C/(1 — u))}.

Thus, by Lemma 2.1 the above integral is finite. When «=0, the same
lemma shows that p=1 and >0, so that

K@Y = 0{(1 — u)™ log™H(C/(1 — u))}

which is again L-integrable on [0, 1]. The case a=1, =0 also results in a
finite integral, as is easily seen.
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When 7>k+1—v», we need also consider the term R,,,. We have

»

1
v !
PReal” < A | = f D, 4(1 — v) dv
T Jk+1/v+r1

P

IIA

4 k+1(pap(1— k+1 )
T k+1+4+

»
k+1q)a.p( T )
T k+1

4 k+1 (Daﬂ(k+1—-v)
k+1—9v k+1

IIA
N

b4

IIA

— . \eP—D —Bp ;}

O{(k+1 »)**7? log PR

if 0<«<1, which, again by Lemma 2.1 is L-integrable on [k, k+1]. If
a=0, >0 0r a=1, $=0, Lemma 2.1 and the appropriate order relations
show that in these cases, too, the integral involved is finite.

The arguments for the intervals (4, 1) and ([w], w) are similar. Thus,
for 0<7<{, the integrand on the right-hand side of (3.6) is uniformly
dominated by a summable function. The argument for —4 <7 <0 issimilar.
So passage to the limit under the integral sign in (3.6) as 7—0 is permitted.
Since for «'>«, or a’=a, f'>f, convergence of the integrals involved is
improved, interchange of limit and integration after dividing by |¢|” on
the left-hand side of (3.5) is also permitted. From (3.5), then, we have

w Y4 w
f dugAf
1 1

Now suppose 1 =¢=p. Then
rw q ® L, pya/p( fw 1—a/p
J du§{f u— A“E) } {f du}
1 1 du )

= o(wa/n) . O(wl—a/p) = o(w).
Finally, Bosanquet and Linfoot have shown that summability («, §)
implies summability («', #') with o, 8, &', 8’ as specified. The proof is
therefore complete.

p
dv.

d '
u— A< E(y
i (u)

d
= A(a.ﬂ) ,
v y (»)

d (a’.B’
u—A a’.p’)
du @)

d

4. Relation to absolute summability. Absolute («, ) summability
means that 4**(u) is of bounded variation on [1, o) (see [3]). Examples
are known of series summable |C, «| but not [C, «; p] for p>1 (see e.g.
Hyslop [4]) and also of series summable [C, o; p] but not |C, «|. These
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same examples show, then, that |«, 8] and [«, 8; p] summability are not
in general comparable. We do, however, have the following theorem.

THEOREM 4.1. If > a, is summable |a, |, for «>0, or a=0, >0, then
it is also summable [o, §; 1].

Proor. It is known (see [3]) that |«, f] summability implies («, )
summability. By hypothesis

lim du=L (O=L< )
t=oJ1

t
d
= Alp)
y (u)

u

from which it follows also that

. 1 (¢ ! d (a.B)

lim — — AP (u)| du dt = L.

o~ wJ1 J1 | du
But

Py t w fo
lj f Li_A(a.ﬁ)(u) du dt = -l—f f . 4 AP (u)| dt du
w1 1 |du w1 Ju |du
= J' l-d—A(“" )| du — 1 f uiA("” '(u)| du.
1 | du w1 du

Letting w— o0, we get
(5]

L=L—lim+ du.

w—=on W J1

d
—_ A(z.ﬁ)
Ly (u)

So > a, is summable [«, §; 1].
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