Regularity in terms of reductions in local Noether lattices
HTML articles powered by AMS MathViewer
- by Michael E. Detlefsen
- Proc. Amer. Math. Soc. 43 (1974), 1-7
- DOI: https://doi.org/10.1090/S0002-9939-1974-0327728-0
- PDF | Request permission
Abstract:
An $(n,d)$-sequence in a local Noether lattice $(L,M)$ is a sequence of words which satisfy certain factorization properties. If $(L,M)$ satisfies the union condition, there exist $(n,d)$-sequences which can be extended to minimal bases for the powers of $M$. Consequently, if $(L,M)$ satisfies the union condition, $(L,M)$ is regular if and only if $M$ is a minimal reduction.References
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Kenneth P. Bogart, Structure theorems for regular local Noether lattices, Michigan Math. J. 15 (1968), 167–176. MR 227057
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. II, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1967. MR 0218472
- R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481–498. MR 143781
- E. W. Johnson, $A$-transforms and Hilbert functions in local lattices, Trans. Amer. Math. Soc. 137 (1969), 125–139. MR 237387, DOI 10.1090/S0002-9947-1969-0237387-6 —, $A$-transforms in Noether lattices, Dissertation, University of California, Riverside, Calif., 1966.
- D. G. Northcott, Ideal theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 42, Cambridge, at the University Press, 1953. MR 0058575
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, DOI 10.1017/s0305004100029194
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 1-7
- MSC: Primary 13A15
- DOI: https://doi.org/10.1090/S0002-9939-1974-0327728-0
- MathSciNet review: 0327728