The condition $\textrm {Ext}^1(M, R) = 0$ for modules over local Artin algebras $(R, \mathfrak {M})$ with $\mathfrak {M}^2 = 0$
HTML articles powered by AMS MathViewer
- by Margaret S. Menzin
- Proc. Amer. Math. Soc. 43 (1974), 47-52
- DOI: https://doi.org/10.1090/S0002-9939-1974-0330227-3
- PDF | Request permission
Abstract:
Let $M$ be a finitely generated module over a (not necessarily commutative) local Artin algebra $(R,\mathfrak {M})$ with ${\mathfrak {M}^2} = 0$. It is known that when $R$ is Gorenstein (i.e. of finite injective dimension) $M = \sum R \oplus \sum R/\mathfrak {M}$. For $R$ not Gorenstein we describe all $M$ with ${\operatorname {Ext} ^1}(M,R) = 0$ and show that ${\operatorname {Ext} ^i}(M,R) = 0$ for some $i > 1$ if and only if $M$ is free. It follows that for $R$ not Gorenstein all reflexives are free. We also calculate the lengths of all the ${\operatorname {Ext} ^i}(M,R)$. As an application we show that if $(R,\mathfrak {M})$ is a commutative Cohen-Macaulay local ring of dimension $d$ which is not Gorenstein, if $R/{\mathfrak {M}^2}$ is Artin and $({x_1}, \cdots ,{x_d})$ is a system of parameters with ${\mathfrak {M}^2}$ contained in the ideal $({x_1}, \cdots ,{x_d})$ and if $M$ is a finitely generated $R$-module with ${\operatorname {Ext} ^i}(M,R) = 0$ for $1 \leqq i \leqq 2d + 2$, then $M$ is free.References
- Maurice Auslander, Coherent functors, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 189–231. MR 0212070
- Maurice Auslander, Comments on the functor $\textrm {Ext}$, Topology 8 (1969), 151–166. MR 237606, DOI 10.1016/0040-9383(69)90006-8
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Anneaux de Gorenstein, et torsion en algèbre commutative, École Normale Supérieure de Jeunes Filles, Secrétariat mathématique, Paris, 1967 (French). Séminaire d’Algèbre Commutative dirigé par Pierre Samuel, 1966/67; Texte rédigé, d’après des exposés de Maurice Auslander, Marguerite Mangeney, Christian Peskine et Lucien Szpiro. MR 0225844
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 47-52
- MSC: Primary 16A62
- DOI: https://doi.org/10.1090/S0002-9939-1974-0330227-3
- MathSciNet review: 0330227