On Huppert’s condition $B$
HTML articles powered by AMS MathViewer
- by J. C. Beidleman
- Proc. Amer. Math. Soc. 43 (1974), 18-20
- DOI: https://doi.org/10.1090/S0002-9939-1974-0330281-9
- PDF | Request permission
Abstract:
Let $\mathcal {F}$ be a saturated formation of finite soluble groups. $\mathcal {F}$ is said to satisfy condition $\text {B}$ if and only if (a) $\mathcal {F}$ is subgroup-closed, and (b) $G \in \mathcal {F}$ and $N$ a minimal normal subgroup of $G$ implies $\operatorname {Aut} (N) \in \mathfrak {F}$. The purpose of this note is to characterize those saturated formations of finite soluble groups which satisfy condition ${\mathbf {B}}$.References
- Roger Carter and Trevor Hawkes, The ${\cal F}$-normalizers of a finite soluble group, J. Algebra 5 (1967), 175–202. MR 206089, DOI 10.1016/0021-8693(67)90034-8
- Wolfgang Gaschütz, Zur Theorie der endlichen auflösbaren Gruppen, Math. Z. 80 (1962/63), 300–305 (German). MR 179257, DOI 10.1007/BF01162386
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Bertram Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409–434 (German). MR 64771, DOI 10.1007/BF01187387
- Bertram Huppert, Zur Theorie der Formationen, Arch. Math. (Basel) 19 (1969), 561–574 (1969) (German). MR 244382, DOI 10.1007/BF01899382
- Otto H. Kegel, On Huppert’s characterization of finite supersoluble groups, Proc. Internat. Conf. Theory of Groups (Canberra, 1965) Gordon and Breach, New York, 1967, pp. 209–215. MR 0217183
- Joseph J. Rotman, The theory of groups. An introduction, Allyn and Bacon, Inc., Boston, Mass., 1965. MR 0204499
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 18-20
- MSC: Primary 20D10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0330281-9
- MathSciNet review: 0330281