Harmonic null sets and the Painlevé theorem
HTML articles powered by AMS MathViewer
- by J. L. Schiff
- Proc. Amer. Math. Soc. 43 (1974), 171-172
- DOI: https://doi.org/10.1090/S0002-9939-1974-0330447-8
- PDF | Request permission
Abstract:
A less restrictive condition on an open Riemann surface than has been formerly known for a subset of the ideal boundary of a resolutive compactification to have harmonic measure zero is demonstrated. Then a generalized version of a classical theorem of Painlevé is established in this framework.References
- Maynard G. Arsove, The Wiener-Dirichlet problem and the theorem of Evans, Math. Z. 103 (1968), 184–194. MR 220957, DOI 10.1007/BF01111037
- Maynard Arsove and Heinz Leutwiler, Painlevé’s theorem and the Phragmén-Lindelöf maximum principle, Math. Z. 122 (1971), 227–236. MR 308419, DOI 10.1007/BF01109917
- Corneliu Constantinescu and Aurel Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 (German). MR 0159935
- Paul Painlevé, Sur les lignes singulières des fonctions analytiques, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 2 (1888), B1–B130 (French). MR 1508069
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 171-172
- MSC: Primary 30A50; Secondary 31A20
- DOI: https://doi.org/10.1090/S0002-9939-1974-0330447-8
- MathSciNet review: 0330447