A maximum principle for -metaharmonic functions
Authors:
Shui Nee Chow and D. R. Dunninger
Journal:
Proc. Amer. Math. Soc. 43 (1974), 79-83
MSC:
Primary 35J30
DOI:
https://doi.org/10.1090/S0002-9939-1974-0330753-7
MathSciNet review:
0330753
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A class of -metaharmonic functions is shown to satisfy the inequality,
, where
is an arbitrary point in a domain
is some fixed point on the boundary of
, and
is a constant.
- [1] I. N. Vekua, Novye metody rešeniya èlliptičeskih uravneniĭ, OGIZ, Moscow-Leningrad,], 1948 (Russian). MR 0034503
- [2] José L. Massera, Contributions to stability theory, Ann. of Math. (2) 64 (1956), 182–206. MR 79179, https://doi.org/10.2307/1969955
- [3] D. R. Dunninger, Maximum principles for solutions of some fourth-order elliptic equations, J. Math. Anal. Appl. 37 (1972), 655–658. MR 312040, https://doi.org/10.1016/0022-247X(72)90248-X
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J30
Retrieve articles in all journals with MSC: 35J30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1974-0330753-7
Keywords:
-metaharmonic functions,
maximum principle,
Liapunov stability theory
Article copyright:
© Copyright 1974
American Mathematical Society