A maximum principle for $n$-metaharmonic functions
HTML articles powered by AMS MathViewer
- by Shui Nee Chow and D. R. Dunninger
- Proc. Amer. Math. Soc. 43 (1974), 79-83
- DOI: https://doi.org/10.1090/S0002-9939-1974-0330753-7
- PDF | Request permission
Abstract:
A class of $n$-metaharmonic functions is shown to satisfy the inequality, $|u(x)| \leqq k|u({x_0})|$, where $x$ is an arbitrary point in a domain $\bar D,{x_0}$ is some fixed point on the boundary of $D$, and $k$ is a constant.References
- I. N. Vekua, Novye metody rešeniya èlliptiÄŤeskih uravneniÄ, OGIZ, Moscow-Leningrad, 1948 (Russian). MR 0034503
- José L. Massera, Contributions to stability theory, Ann. of Math. (2) 64 (1956), 182–206. MR 79179, DOI 10.2307/1969955
- D. R. Dunninger, Maximum principles for solutions of some fourth-order elliptic equations, J. Math. Anal. Appl. 37 (1972), 655–658. MR 312040, DOI 10.1016/0022-247X(72)90248-X
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 79-83
- MSC: Primary 35J30
- DOI: https://doi.org/10.1090/S0002-9939-1974-0330753-7
- MathSciNet review: 0330753