Standard and alternative algebras with completely reducible derivation algebras
Author:
Ernest L. Stitzinger
Journal:
Proc. Amer. Math. Soc. 43 (1974), 57-62
MSC:
Primary 17D05
DOI:
https://doi.org/10.1090/S0002-9939-1974-0332914-X
MathSciNet review:
0332914
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a finite-dimensional standard or alternative algebra over a field of characteristic 0. A necessary and sufficient condition is found such that the derivation algebra of
is completely reducible acting on
.
- [1] A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552–593. MR 27750, https://doi.org/10.1090/S0002-9947-1948-0027750-7
- [2] Richard E. Block, A unification of the theories of Jordan and alternative algebras, Amer. J. Math. 94 (1972), 389–412. MR 313332, https://doi.org/10.2307/2374627
- [3] Claude Chevalley, Théorie des groupes de Lie. Tome II. Groupes algébriques, Actualités Sci. Ind. no. 1152, Hermann & Cie., Paris, 1951 (French). MR 0051242
- [4] G. Hochschild, Semi-simple algebras and generalized derivations, Amer. J. Math. 64 (1942), 677–694. MR 7009, https://doi.org/10.2307/2371713
- [5] Nathan Jacobson, Completely reducible Lie algebras of linear transformations, Proc. Amer. Math. Soc. 2 (1951), 105–113. MR 49882, https://doi.org/10.1090/S0002-9939-1951-0049882-5
- [6] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. MR 0143793
- [7] Erwin Kleinfeld, Standard and accessible rings, Canadian J. Math. 8 (1956), 335–340. MR 78349, https://doi.org/10.4153/CJM-1956-038-0
- [8] R. D. Schafer, Representations of alternative algebras, Trans. Amer. Math. Soc. 72 (1952), 1–17. MR 45101, https://doi.org/10.1090/S0002-9947-1952-0045101-X
- [9] -, An introduction to non-associative algebras, Pure and Appl. Math., vol. 22, Academic Press, New York, 1966. MR 35 #1643.
- [10] R. D. Schafer, Standard algebras, Pacific J. Math. 29 (1969), 203–223. MR 244332
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17D05
Retrieve articles in all journals with MSC: 17D05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1974-0332914-X
Article copyright:
© Copyright 1974
American Mathematical Society