An extremal problem for polynomials with a prescribed zero
HTML articles powered by AMS MathViewer
- by Q. I. Rahman and Frank Stenger
- Proc. Amer. Math. Soc. 43 (1974), 84-90
- DOI: https://doi.org/10.1090/S0002-9939-1974-0333123-0
- PDF | Request permission
Abstract:
Let ${\mathcal {P}_{n,b}}$ denote the class of all polynomials ${p_n}(z)$ of degree at most $n$ in $z$ which satisfy ${\max _{|z| = 1}}|{p_n}(z)| = 1$, and $|{p_n}(1)| = b,0 \leqq b < 1$. Let $c \in (0,n]$, and set \[ {\mu _b}(c,n) = \sup \limits _{{p_n} \in {\mathcal {P}_{n,b}}} \{ \min \limits _{|z| = 1 - c/n} |{p_n}(z)|\} .\] Upper estimates for ${\mu _b}(c,n)$ are obtained.References
- N. G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch., Proc. 50 (1947), 1265–1272 = Indagationes Math. 9, 591–598 (1947). MR 23380
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727 S. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle, Gauthier-Villars, Paris, 1926.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 84-90
- MSC: Primary 30A06
- DOI: https://doi.org/10.1090/S0002-9939-1974-0333123-0
- MathSciNet review: 0333123